Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153156969> ?p ?o ?g. }
- W2153156969 endingPage "648" @default.
- W2153156969 startingPage "641" @default.
- W2153156969 abstract "In wireless sensor networks, it is already noted that nearby sensor nodes monitoring an environmental feature typically register similar values. This kind of data redundancy due to the spatial correlation between sensor observations inspires the research of in-network data aggregation. In this paper, an α -local spatial clustering algorithm for sensor networks is proposed. By measuring the spatial correlation between data sampled by different sensors, the algorithm constructs a dominating set as the sensor network backbone used to realize the data aggregation based on the information description/summarization performance of the dominators. In order to evaluate the performance of the algorithm a pattern recognition scenario over environmental data is presented. The evaluation shows that the resulting network achieved by our algorithm can provide environmental information at higher accuracy compared to other algorithms." @default.
- W2153156969 created "2016-06-24" @default.
- W2153156969 creator A5043715028 @default.
- W2153156969 creator A5045081171 @default.
- W2153156969 creator A5054898062 @default.
- W2153156969 creator A5089986809 @default.
- W2153156969 date "2011-03-01" @default.
- W2153156969 modified "2023-09-25" @default.
- W2153156969 title "Distributed Clustering-Based Aggregation Algorithm for Spatial Correlated Sensor Networks" @default.
- W2153156969 cites W1484865849 @default.
- W2153156969 cites W1973749534 @default.
- W2153156969 cites W1976334216 @default.
- W2153156969 cites W1993837047 @default.
- W2153156969 cites W2014734529 @default.
- W2153156969 cites W2015124460 @default.
- W2153156969 cites W2077243267 @default.
- W2153156969 cites W2088087163 @default.
- W2153156969 cites W2093381928 @default.
- W2153156969 cites W2098003807 @default.
- W2153156969 cites W2098502330 @default.
- W2153156969 cites W2104846640 @default.
- W2153156969 cites W2106654416 @default.
- W2153156969 cites W2113829484 @default.
- W2153156969 cites W2114124631 @default.
- W2153156969 cites W2117528175 @default.
- W2153156969 cites W2120170057 @default.
- W2153156969 cites W2120827090 @default.
- W2153156969 cites W2123820440 @default.
- W2153156969 cites W2128140243 @default.
- W2153156969 cites W2130209633 @default.
- W2153156969 cites W2130593958 @default.
- W2153156969 cites W2131791946 @default.
- W2153156969 cites W2132865505 @default.
- W2153156969 cites W2137486085 @default.
- W2153156969 cites W2141948645 @default.
- W2153156969 cites W2144294963 @default.
- W2153156969 cites W2144487157 @default.
- W2153156969 cites W2147902283 @default.
- W2153156969 cites W2155492251 @default.
- W2153156969 cites W2155864758 @default.
- W2153156969 cites W2156967069 @default.
- W2153156969 cites W2160950139 @default.
- W2153156969 cites W3141863997 @default.
- W2153156969 cites W2117975440 @default.
- W2153156969 doi "https://doi.org/10.1109/jsen.2010.2056916" @default.
- W2153156969 hasPublicationYear "2011" @default.
- W2153156969 type Work @default.
- W2153156969 sameAs 2153156969 @default.
- W2153156969 citedByCount "85" @default.
- W2153156969 countsByYear W21531569692012 @default.
- W2153156969 countsByYear W21531569692013 @default.
- W2153156969 countsByYear W21531569692014 @default.
- W2153156969 countsByYear W21531569692015 @default.
- W2153156969 countsByYear W21531569692016 @default.
- W2153156969 countsByYear W21531569692017 @default.
- W2153156969 countsByYear W21531569692018 @default.
- W2153156969 countsByYear W21531569692019 @default.
- W2153156969 countsByYear W21531569692020 @default.
- W2153156969 countsByYear W21531569692021 @default.
- W2153156969 countsByYear W21531569692022 @default.
- W2153156969 countsByYear W21531569692023 @default.
- W2153156969 crossrefType "journal-article" @default.
- W2153156969 hasAuthorship W2153156969A5043715028 @default.
- W2153156969 hasAuthorship W2153156969A5045081171 @default.
- W2153156969 hasAuthorship W2153156969A5054898062 @default.
- W2153156969 hasAuthorship W2153156969A5089986809 @default.
- W2153156969 hasBestOaLocation W21531569692 @default.
- W2153156969 hasConcept C10000559 @default.
- W2153156969 hasConcept C108037233 @default.
- W2153156969 hasConcept C111919701 @default.
- W2153156969 hasConcept C11413529 @default.
- W2153156969 hasConcept C124101348 @default.
- W2153156969 hasConcept C127313418 @default.
- W2153156969 hasConcept C150060386 @default.
- W2153156969 hasConcept C152124472 @default.
- W2153156969 hasConcept C154945302 @default.
- W2153156969 hasConcept C159620131 @default.
- W2153156969 hasConcept C170858558 @default.
- W2153156969 hasConcept C24590314 @default.
- W2153156969 hasConcept C31258907 @default.
- W2153156969 hasConcept C41008148 @default.
- W2153156969 hasConcept C41971633 @default.
- W2153156969 hasConcept C555944384 @default.
- W2153156969 hasConcept C62649853 @default.
- W2153156969 hasConcept C73555534 @default.
- W2153156969 hasConcept C7545210 @default.
- W2153156969 hasConcept C76155785 @default.
- W2153156969 hasConcept C82578977 @default.
- W2153156969 hasConceptScore W2153156969C10000559 @default.
- W2153156969 hasConceptScore W2153156969C108037233 @default.
- W2153156969 hasConceptScore W2153156969C111919701 @default.
- W2153156969 hasConceptScore W2153156969C11413529 @default.
- W2153156969 hasConceptScore W2153156969C124101348 @default.
- W2153156969 hasConceptScore W2153156969C127313418 @default.
- W2153156969 hasConceptScore W2153156969C150060386 @default.
- W2153156969 hasConceptScore W2153156969C152124472 @default.
- W2153156969 hasConceptScore W2153156969C154945302 @default.
- W2153156969 hasConceptScore W2153156969C159620131 @default.