Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153281657> ?p ?o ?g. }
- W2153281657 abstract "It has been shown previously that systems based on local features and relatively complex generative models, namely 1D hidden Markov models (HMMs) and pseudo-2D HMMs, are suitable for face recognition (here we mean both identification and verification). Recently a simpler generative model, namely the Gaussian mixture model (GMM), was also shown to perform well. In this paper we first propose to increase the performance of the GMM approach (without sacrificing its simplicity) through the use of local features with embedded positional information; we show that the performance obtained is comparable to 1D HMMs. Secondly, we evaluate different training techniques for both GMM and HMM based systems. We show that the traditionally used maximum likelihood (ML) training approach has problems estimating robust model parameters when there is only a few training images available; we propose to tackle this problem through the use of maximum a posteriori (MAP) training, where the lack of data problem can be effectively circumvented; we show that models estimated with MAP are significantly more robust and are able to generalize to adverse conditions present in the BANCA database." @default.
- W2153281657 created "2016-06-24" @default.
- W2153281657 creator A5017529415 @default.
- W2153281657 creator A5054815937 @default.
- W2153281657 creator A5056623642 @default.
- W2153281657 date "2004-06-10" @default.
- W2153281657 modified "2023-09-26" @default.
- W2153281657 title "Face verification using adapted generative models" @default.
- W2153281657 cites W147723833 @default.
- W2153281657 cites W1480865305 @default.
- W2153281657 cites W1548328233 @default.
- W2153281657 cites W1579299427 @default.
- W2153281657 cites W1596028639 @default.
- W2153281657 cites W1852256319 @default.
- W2153281657 cites W2033341974 @default.
- W2153281657 cites W2049633694 @default.
- W2153281657 cites W2097021277 @default.
- W2153281657 cites W2100969003 @default.
- W2153281657 cites W2125838338 @default.
- W2153281657 cites W2138243884 @default.
- W2153281657 cites W2146824864 @default.
- W2153281657 cites W2151285616 @default.
- W2153281657 cites W2156404139 @default.
- W2153281657 cites W2799061466 @default.
- W2153281657 doi "https://doi.org/10.1109/afgr.2004.1301636" @default.
- W2153281657 hasPublicationYear "2004" @default.
- W2153281657 type Work @default.
- W2153281657 sameAs 2153281657 @default.
- W2153281657 citedByCount "46" @default.
- W2153281657 countsByYear W21532816572012 @default.
- W2153281657 countsByYear W21532816572013 @default.
- W2153281657 countsByYear W21532816572014 @default.
- W2153281657 countsByYear W21532816572015 @default.
- W2153281657 countsByYear W21532816572017 @default.
- W2153281657 countsByYear W21532816572019 @default.
- W2153281657 crossrefType "proceedings-article" @default.
- W2153281657 hasAuthorship W2153281657A5017529415 @default.
- W2153281657 hasAuthorship W2153281657A5054815937 @default.
- W2153281657 hasAuthorship W2153281657A5056623642 @default.
- W2153281657 hasBestOaLocation W21532816572 @default.
- W2153281657 hasConcept C105795698 @default.
- W2153281657 hasConcept C111472728 @default.
- W2153281657 hasConcept C116834253 @default.
- W2153281657 hasConcept C119857082 @default.
- W2153281657 hasConcept C138885662 @default.
- W2153281657 hasConcept C144024400 @default.
- W2153281657 hasConcept C153180895 @default.
- W2153281657 hasConcept C154945302 @default.
- W2153281657 hasConcept C167966045 @default.
- W2153281657 hasConcept C23224414 @default.
- W2153281657 hasConcept C2779304628 @default.
- W2153281657 hasConcept C28490314 @default.
- W2153281657 hasConcept C33923547 @default.
- W2153281657 hasConcept C36289849 @default.
- W2153281657 hasConcept C39890363 @default.
- W2153281657 hasConcept C41008148 @default.
- W2153281657 hasConcept C49781872 @default.
- W2153281657 hasConcept C59822182 @default.
- W2153281657 hasConcept C61224824 @default.
- W2153281657 hasConcept C75553542 @default.
- W2153281657 hasConcept C86803240 @default.
- W2153281657 hasConcept C9810830 @default.
- W2153281657 hasConceptScore W2153281657C105795698 @default.
- W2153281657 hasConceptScore W2153281657C111472728 @default.
- W2153281657 hasConceptScore W2153281657C116834253 @default.
- W2153281657 hasConceptScore W2153281657C119857082 @default.
- W2153281657 hasConceptScore W2153281657C138885662 @default.
- W2153281657 hasConceptScore W2153281657C144024400 @default.
- W2153281657 hasConceptScore W2153281657C153180895 @default.
- W2153281657 hasConceptScore W2153281657C154945302 @default.
- W2153281657 hasConceptScore W2153281657C167966045 @default.
- W2153281657 hasConceptScore W2153281657C23224414 @default.
- W2153281657 hasConceptScore W2153281657C2779304628 @default.
- W2153281657 hasConceptScore W2153281657C28490314 @default.
- W2153281657 hasConceptScore W2153281657C33923547 @default.
- W2153281657 hasConceptScore W2153281657C36289849 @default.
- W2153281657 hasConceptScore W2153281657C39890363 @default.
- W2153281657 hasConceptScore W2153281657C41008148 @default.
- W2153281657 hasConceptScore W2153281657C49781872 @default.
- W2153281657 hasConceptScore W2153281657C59822182 @default.
- W2153281657 hasConceptScore W2153281657C61224824 @default.
- W2153281657 hasConceptScore W2153281657C75553542 @default.
- W2153281657 hasConceptScore W2153281657C86803240 @default.
- W2153281657 hasConceptScore W2153281657C9810830 @default.
- W2153281657 hasLocation W21532816571 @default.
- W2153281657 hasLocation W21532816572 @default.
- W2153281657 hasLocation W21532816573 @default.
- W2153281657 hasLocation W21532816574 @default.
- W2153281657 hasOpenAccess W2153281657 @default.
- W2153281657 hasPrimaryLocation W21532816571 @default.
- W2153281657 hasRelatedWork W1595191759 @default.
- W2153281657 hasRelatedWork W2041159537 @default.
- W2153281657 hasRelatedWork W2115717397 @default.
- W2153281657 hasRelatedWork W2124530615 @default.
- W2153281657 hasRelatedWork W2128232757 @default.
- W2153281657 hasRelatedWork W2134483445 @default.
- W2153281657 hasRelatedWork W2153281657 @default.
- W2153281657 hasRelatedWork W2169807144 @default.
- W2153281657 hasRelatedWork W2392575007 @default.
- W2153281657 hasRelatedWork W2789430028 @default.