Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153284807> ?p ?o ?g. }
- W2153284807 endingPage "1645" @default.
- W2153284807 startingPage "1619" @default.
- W2153284807 abstract "The Gęsiniec Intrusion (Strzelin Massif, East Sudetes) (∼307–290 Ma) is composed predominantly of dioritic to tonalitic rocks with 87Sr/86Sr ratios ranging from 0·7069 to 0·7080 and εNd = –3·1 to –4·2, emplaced as post-collisional magmas following the Variscan orogeny. In situ Sr isotope and trace element analyses of plagioclase were carried out on five diorite–tonalite samples with variable whole-rock 87Sr/86Sr compositions to constrain magma sources and elucidate magma chamber processes. Plagioclase is characterized by complex zoning patterns, such as patchy zoning, asymmetrical zoning and strong resorption between An-rich cores and more albitic rims. The range of Sr isotopic compositions recorded in plagioclase is 0·7069–0·7091, greater than that of the whole-rocks. No change in isotopic composition is observed across resorbed core–rim boundaries, as would be expected if the resorption was caused by magma mixing. Two samples are close to Sr isotopic equilibrium between plagioclase and the whole-rock. Three samples are isotopically heterogeneous and exhibit the largest variations in Sr isotope ratios within high-An plagioclase cores, associated with only slight resorption and almost no change in An content. Consequently, we interpret the core resorption to be due to decompression during emplacement of phenocryst-bearing magmas in the upper crust rather than to magma mixing, whereas we interpret the isotopic heterogeneity in the high-An plagioclase cores to be due to open-system processes in the lower crust. The trace element and Sr isotopic compositions of the high-An plagioclase cores provide an insight into the lower crustal processes that took place prior to decompression. We show that different diorite–tonalite types cannot be related to each other by assimilation–fractional crystallization processes and consequently they probably evolved as separate magma batches. Processes recorded in plagioclase core compositions include contamination by high 87Sr/86Sr crustal material and interaction with water-rich magma. The studied samples represent magmas that probably formed either by continuous differentiation and crustal contamination of originally more mafic magmas or by remelting of ∼ 1·3–2·1 Ga basaltic materials in the lower crust. This study emphasizes the importance of integrating textural and in situ data to elucidate the processes that contribute to the formation of texturally and compositionally complex plagioclase crystals in plutonic rocks." @default.
- W2153284807 created "2016-06-24" @default.
- W2153284807 creator A5019863193 @default.
- W2153284807 creator A5085862473 @default.
- W2153284807 date "2008-09-01" @default.
- W2153284807 modified "2023-09-25" @default.
- W2153284807 title "Processes and Sources during Late Variscan Dioritic–Tonalitic Magmatism: Insights from Plagioclase Chemistry (Gęsiniec Intrusion, NE Bohemian Massif, Poland)" @default.
- W2153284807 cites W150070650 @default.
- W2153284807 cites W1642975605 @default.
- W2153284807 cites W1922701939 @default.
- W2153284807 cites W1966500375 @default.
- W2153284807 cites W1967915973 @default.
- W2153284807 cites W1968213772 @default.
- W2153284807 cites W1975871169 @default.
- W2153284807 cites W1977457396 @default.
- W2153284807 cites W1986714044 @default.
- W2153284807 cites W1996467388 @default.
- W2153284807 cites W2000266108 @default.
- W2153284807 cites W2003725144 @default.
- W2153284807 cites W2008321632 @default.
- W2153284807 cites W2016602232 @default.
- W2153284807 cites W2018489161 @default.
- W2153284807 cites W2018946474 @default.
- W2153284807 cites W2022732789 @default.
- W2153284807 cites W2023627326 @default.
- W2153284807 cites W2024436619 @default.
- W2153284807 cites W2028522072 @default.
- W2153284807 cites W2037024270 @default.
- W2153284807 cites W2043728433 @default.
- W2153284807 cites W2052779241 @default.
- W2153284807 cites W2066172458 @default.
- W2153284807 cites W2067505690 @default.
- W2153284807 cites W2070065380 @default.
- W2153284807 cites W2070745951 @default.
- W2153284807 cites W2072536276 @default.
- W2153284807 cites W2080843545 @default.
- W2153284807 cites W2081911018 @default.
- W2153284807 cites W2083296022 @default.
- W2153284807 cites W2086557360 @default.
- W2153284807 cites W2089731618 @default.
- W2153284807 cites W2092033333 @default.
- W2153284807 cites W2098142094 @default.
- W2153284807 cites W2101614769 @default.
- W2153284807 cites W2102247250 @default.
- W2153284807 cites W2102973797 @default.
- W2153284807 cites W2104091804 @default.
- W2153284807 cites W2105662998 @default.
- W2153284807 cites W2106079840 @default.
- W2153284807 cites W2108149933 @default.
- W2153284807 cites W2111099095 @default.
- W2153284807 cites W2112313421 @default.
- W2153284807 cites W2127236625 @default.
- W2153284807 cites W2131012545 @default.
- W2153284807 cites W2133105333 @default.
- W2153284807 cites W2138522501 @default.
- W2153284807 cites W2141459811 @default.
- W2153284807 cites W2150455341 @default.
- W2153284807 cites W2161226658 @default.
- W2153284807 cites W2170189319 @default.
- W2153284807 cites W2170802431 @default.
- W2153284807 cites W2214439999 @default.
- W2153284807 cites W2325514473 @default.
- W2153284807 cites W2334581221 @default.
- W2153284807 cites W3031845307 @default.
- W2153284807 cites W3168795580 @default.
- W2153284807 cites W4247998004 @default.
- W2153284807 doi "https://doi.org/10.1093/petrology/egn040" @default.
- W2153284807 hasPublicationYear "2008" @default.
- W2153284807 type Work @default.
- W2153284807 sameAs 2153284807 @default.
- W2153284807 citedByCount "34" @default.
- W2153284807 countsByYear W21532848072012 @default.
- W2153284807 countsByYear W21532848072013 @default.
- W2153284807 countsByYear W21532848072014 @default.
- W2153284807 countsByYear W21532848072015 @default.
- W2153284807 countsByYear W21532848072016 @default.
- W2153284807 countsByYear W21532848072017 @default.
- W2153284807 countsByYear W21532848072018 @default.
- W2153284807 countsByYear W21532848072019 @default.
- W2153284807 countsByYear W21532848072020 @default.
- W2153284807 countsByYear W21532848072021 @default.
- W2153284807 countsByYear W21532848072022 @default.
- W2153284807 countsByYear W21532848072023 @default.
- W2153284807 crossrefType "journal-article" @default.
- W2153284807 hasAuthorship W2153284807A5019863193 @default.
- W2153284807 hasAuthorship W2153284807A5085862473 @default.
- W2153284807 hasBestOaLocation W21532848071 @default.
- W2153284807 hasConcept C120806208 @default.
- W2153284807 hasConcept C127313418 @default.
- W2153284807 hasConcept C151730666 @default.
- W2153284807 hasConcept C160776313 @default.
- W2153284807 hasConcept C162973429 @default.
- W2153284807 hasConcept C165205528 @default.
- W2153284807 hasConcept C17409809 @default.
- W2153284807 hasConcept C182402614 @default.
- W2153284807 hasConcept C183222429 @default.
- W2153284807 hasConcept C2779181077 @default.
- W2153284807 hasConcept C2779870107 @default.