Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153408914> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2153408914 endingPage "415" @default.
- W2153408914 startingPage "405" @default.
- W2153408914 abstract "This study presents an application of neural network methods for forecasting per pupil expenditures in public elementary and secondary schools in the United States. Using annual historical data from 1959 through 1990, forecasts were prepared for the period from 1991 through 1995. Forecasting models included the multivariate regression model developed by the National Center for Education Statistics for their annual Projections of Education Statistics Series, and three neural architectures: (1) recurrent backpropagation; (2) Generalized Regression; and (3) Group Method of Data Handling. Forecasts were compared for accuracy against actual values for educational spending for the period. Regarding prediction accuracy, neural network results ranged from comparable to superior with respect to the NCES model. Contrary to expectations, the most successful neural network procedure yielded its results with an even simpler linear form than the NCES model. The findings suggest the potential value of neural algorithms for strengthening econometric models as well as producing accurate forecasts. [JEL C45, C53, I21]" @default.
- W2153408914 created "2016-06-24" @default.
- W2153408914 creator A5026078580 @default.
- W2153408914 creator A5036312739 @default.
- W2153408914 date "1999-10-01" @default.
- W2153408914 modified "2023-09-23" @default.
- W2153408914 title "A comparison of conventional linear regression methods and neural networks for forecasting educational spending" @default.
- W2153408914 cites W1526845589 @default.
- W2153408914 cites W1754495824 @default.
- W2153408914 cites W2019734720 @default.
- W2153408914 cites W2023873133 @default.
- W2153408914 cites W2088897322 @default.
- W2153408914 cites W2134817998 @default.
- W2153408914 cites W2149723649 @default.
- W2153408914 doi "https://doi.org/10.1016/s0272-7757(99)00003-5" @default.
- W2153408914 hasPublicationYear "1999" @default.
- W2153408914 type Work @default.
- W2153408914 sameAs 2153408914 @default.
- W2153408914 citedByCount "39" @default.
- W2153408914 countsByYear W21534089142012 @default.
- W2153408914 countsByYear W21534089142015 @default.
- W2153408914 countsByYear W21534089142016 @default.
- W2153408914 countsByYear W21534089142018 @default.
- W2153408914 countsByYear W21534089142019 @default.
- W2153408914 countsByYear W21534089142021 @default.
- W2153408914 countsByYear W21534089142022 @default.
- W2153408914 crossrefType "journal-article" @default.
- W2153408914 hasAuthorship W2153408914A5026078580 @default.
- W2153408914 hasAuthorship W2153408914A5036312739 @default.
- W2153408914 hasConcept C105795698 @default.
- W2153408914 hasConcept C149782125 @default.
- W2153408914 hasConcept C152877465 @default.
- W2153408914 hasConcept C154945302 @default.
- W2153408914 hasConcept C155032097 @default.
- W2153408914 hasConcept C161584116 @default.
- W2153408914 hasConcept C162324750 @default.
- W2153408914 hasConcept C180075932 @default.
- W2153408914 hasConcept C2776291640 @default.
- W2153408914 hasConcept C33923547 @default.
- W2153408914 hasConcept C41008148 @default.
- W2153408914 hasConcept C48921125 @default.
- W2153408914 hasConcept C50644808 @default.
- W2153408914 hasConcept C64946054 @default.
- W2153408914 hasConcept C83546350 @default.
- W2153408914 hasConceptScore W2153408914C105795698 @default.
- W2153408914 hasConceptScore W2153408914C149782125 @default.
- W2153408914 hasConceptScore W2153408914C152877465 @default.
- W2153408914 hasConceptScore W2153408914C154945302 @default.
- W2153408914 hasConceptScore W2153408914C155032097 @default.
- W2153408914 hasConceptScore W2153408914C161584116 @default.
- W2153408914 hasConceptScore W2153408914C162324750 @default.
- W2153408914 hasConceptScore W2153408914C180075932 @default.
- W2153408914 hasConceptScore W2153408914C2776291640 @default.
- W2153408914 hasConceptScore W2153408914C33923547 @default.
- W2153408914 hasConceptScore W2153408914C41008148 @default.
- W2153408914 hasConceptScore W2153408914C48921125 @default.
- W2153408914 hasConceptScore W2153408914C50644808 @default.
- W2153408914 hasConceptScore W2153408914C64946054 @default.
- W2153408914 hasConceptScore W2153408914C83546350 @default.
- W2153408914 hasIssue "4" @default.
- W2153408914 hasLocation W21534089141 @default.
- W2153408914 hasOpenAccess W2153408914 @default.
- W2153408914 hasPrimaryLocation W21534089141 @default.
- W2153408914 hasRelatedWork W1572988339 @default.
- W2153408914 hasRelatedWork W2065439233 @default.
- W2153408914 hasRelatedWork W2140265721 @default.
- W2153408914 hasRelatedWork W2361261277 @default.
- W2153408914 hasRelatedWork W2366651177 @default.
- W2153408914 hasRelatedWork W2784432193 @default.
- W2153408914 hasRelatedWork W2790053847 @default.
- W2153408914 hasRelatedWork W3172887576 @default.
- W2153408914 hasRelatedWork W3199622279 @default.
- W2153408914 hasRelatedWork W2463955626 @default.
- W2153408914 hasVolume "18" @default.
- W2153408914 isParatext "false" @default.
- W2153408914 isRetracted "false" @default.
- W2153408914 magId "2153408914" @default.
- W2153408914 workType "article" @default.