Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153544503> ?p ?o ?g. }
- W2153544503 endingPage "2140" @default.
- W2153544503 startingPage "2115" @default.
- W2153544503 abstract "A continuous time Bayesian network (CTBN) uses a structured representation to describe a dynamic system with a finite number of states which evolves in continuous time. Exact inference in a CTBN is often intractable as the state space of the dynamic system grows exponentially with the number of variables. In this paper, we first present an approximate inference algorithm based on importance sampling. We then extend it to continuous-time particle filtering and smoothing algorithms. These three algorithms can estimate the expectation of any function of a trajectory, conditioned on any evidence set constraining the values of subsets of the variables over subsets of the time line. We present experimental results on both synthetic networks and a network learned from a real data set on people's life history events. We show the accuracy as well as the time efficiency of our algorithms, and compare them to other approximate algorithms: expectation propagation and Gibbs sampling." @default.
- W2153544503 created "2016-06-24" @default.
- W2153544503 creator A5042066408 @default.
- W2153544503 creator A5057529537 @default.
- W2153544503 creator A5091230938 @default.
- W2153544503 date "2010-03-01" @default.
- W2153544503 modified "2023-10-07" @default.
- W2153544503 title "Importance Sampling for Continuous Time Bayesian Networks" @default.
- W2153544503 cites W12987287 @default.
- W2153544503 cites W1483307070 @default.
- W2153544503 cites W1494605253 @default.
- W2153544503 cites W1542813581 @default.
- W2153544503 cites W1543675445 @default.
- W2153544503 cites W1557271789 @default.
- W2153544503 cites W1561267729 @default.
- W2153544503 cites W1561981064 @default.
- W2153544503 cites W1563709661 @default.
- W2153544503 cites W1630331242 @default.
- W2153544503 cites W1645398407 @default.
- W2153544503 cites W17127720 @default.
- W2153544503 cites W1872800509 @default.
- W2153544503 cites W1934021597 @default.
- W2153544503 cites W1988827501 @default.
- W2153544503 cites W2007018477 @default.
- W2153544503 cites W2020294948 @default.
- W2153544503 cites W2049633694 @default.
- W2153544503 cites W2082442678 @default.
- W2153544503 cites W2094509095 @default.
- W2153544503 cites W2101586207 @default.
- W2153544503 cites W2103935902 @default.
- W2153544503 cites W2145538960 @default.
- W2153544503 cites W2963905603 @default.
- W2153544503 cites W76189818 @default.
- W2153544503 cites W2072634211 @default.
- W2153544503 doi "https://doi.org/10.5555/1756006.1859923" @default.
- W2153544503 hasPublicationYear "2010" @default.
- W2153544503 type Work @default.
- W2153544503 sameAs 2153544503 @default.
- W2153544503 citedByCount "33" @default.
- W2153544503 countsByYear W21535445032012 @default.
- W2153544503 countsByYear W21535445032013 @default.
- W2153544503 countsByYear W21535445032014 @default.
- W2153544503 countsByYear W21535445032015 @default.
- W2153544503 countsByYear W21535445032016 @default.
- W2153544503 countsByYear W21535445032017 @default.
- W2153544503 countsByYear W21535445032019 @default.
- W2153544503 countsByYear W21535445032020 @default.
- W2153544503 crossrefType "journal-article" @default.
- W2153544503 hasAuthorship W2153544503A5042066408 @default.
- W2153544503 hasAuthorship W2153544503A5057529537 @default.
- W2153544503 hasAuthorship W2153544503A5091230938 @default.
- W2153544503 hasConcept C105795698 @default.
- W2153544503 hasConcept C106131492 @default.
- W2153544503 hasConcept C107673813 @default.
- W2153544503 hasConcept C11413529 @default.
- W2153544503 hasConcept C126255220 @default.
- W2153544503 hasConcept C140779682 @default.
- W2153544503 hasConcept C154945302 @default.
- W2153544503 hasConcept C157286648 @default.
- W2153544503 hasConcept C158424031 @default.
- W2153544503 hasConcept C177264268 @default.
- W2153544503 hasConcept C17744445 @default.
- W2153544503 hasConcept C19499675 @default.
- W2153544503 hasConcept C199360897 @default.
- W2153544503 hasConcept C199539241 @default.
- W2153544503 hasConcept C2776214188 @default.
- W2153544503 hasConcept C2776359362 @default.
- W2153544503 hasConcept C2777472644 @default.
- W2153544503 hasConcept C31972630 @default.
- W2153544503 hasConcept C33724603 @default.
- W2153544503 hasConcept C33923547 @default.
- W2153544503 hasConcept C3770464 @default.
- W2153544503 hasConcept C41008148 @default.
- W2153544503 hasConcept C52421305 @default.
- W2153544503 hasConcept C52740198 @default.
- W2153544503 hasConcept C72434380 @default.
- W2153544503 hasConcept C82142266 @default.
- W2153544503 hasConcept C94625758 @default.
- W2153544503 hasConceptScore W2153544503C105795698 @default.
- W2153544503 hasConceptScore W2153544503C106131492 @default.
- W2153544503 hasConceptScore W2153544503C107673813 @default.
- W2153544503 hasConceptScore W2153544503C11413529 @default.
- W2153544503 hasConceptScore W2153544503C126255220 @default.
- W2153544503 hasConceptScore W2153544503C140779682 @default.
- W2153544503 hasConceptScore W2153544503C154945302 @default.
- W2153544503 hasConceptScore W2153544503C157286648 @default.
- W2153544503 hasConceptScore W2153544503C158424031 @default.
- W2153544503 hasConceptScore W2153544503C177264268 @default.
- W2153544503 hasConceptScore W2153544503C17744445 @default.
- W2153544503 hasConceptScore W2153544503C19499675 @default.
- W2153544503 hasConceptScore W2153544503C199360897 @default.
- W2153544503 hasConceptScore W2153544503C199539241 @default.
- W2153544503 hasConceptScore W2153544503C2776214188 @default.
- W2153544503 hasConceptScore W2153544503C2776359362 @default.
- W2153544503 hasConceptScore W2153544503C2777472644 @default.
- W2153544503 hasConceptScore W2153544503C31972630 @default.
- W2153544503 hasConceptScore W2153544503C33724603 @default.
- W2153544503 hasConceptScore W2153544503C33923547 @default.