Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153569343> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2153569343 endingPage "104" @default.
- W2153569343 startingPage "94" @default.
- W2153569343 abstract "We assessed 6122 environmental modelling papers published since 2005 to determine whether the number of citations each paper had received by September 2014 could be predicted with no knowledge of the paper's quality. A random forest was applied, using a range of easily quantified or classified variables as predictors. The 511 papers published in two key journals in 2008 were further analysed to consider additional variables. Papers with no differential equations received more citations. The topic of the paper, number of authors and publication venue were also significant. Ten other factors, some of which have been found significant in other studies, were also considered, but most added little to the predictive power of the models. Collectively, all factors predicted 16-29% of the variation in citation counts, with the remaining variance (the majority) presumably attributable to important subjective factors such as paper quality, clarity and timeliness. 6122 environmental modelling papers were assessed to determine factors associated with high citation counts.Topic modelling identified seven clusters of papers related by subject.We also assessed 5 very highly cited papers to examine why they were cited.Papers containing differential equations received fewer citations than those without.Papers relating to topics that cross disciplinary boundaries received more citations." @default.
- W2153569343 created "2016-06-24" @default.
- W2153569343 creator A5013745815 @default.
- W2153569343 creator A5036222616 @default.
- W2153569343 date "2016-01-01" @default.
- W2153569343 modified "2023-10-18" @default.
- W2153569343 title "Can we predict citation counts of environmental modelling papers? Fourteen bibliographic and categorical variables predict less than 30% of the variability in citation counts" @default.
- W2153569343 cites W1799889357 @default.
- W2153569343 cites W1963496955 @default.
- W2153569343 cites W1964269691 @default.
- W2153569343 cites W1966661928 @default.
- W2153569343 cites W1978306944 @default.
- W2153569343 cites W1982218215 @default.
- W2153569343 cites W1985791643 @default.
- W2153569343 cites W1989447690 @default.
- W2153569343 cites W1997949504 @default.
- W2153569343 cites W2018027932 @default.
- W2153569343 cites W2041911405 @default.
- W2153569343 cites W2045631376 @default.
- W2153569343 cites W2050365211 @default.
- W2153569343 cites W2060348061 @default.
- W2153569343 cites W2061588858 @default.
- W2153569343 cites W2067953767 @default.
- W2153569343 cites W2080514345 @default.
- W2153569343 cites W2086073498 @default.
- W2153569343 cites W2100721575 @default.
- W2153569343 cites W2106404266 @default.
- W2153569343 cites W2108695571 @default.
- W2153569343 cites W2112258233 @default.
- W2153569343 cites W2116219696 @default.
- W2153569343 cites W2117331411 @default.
- W2153569343 cites W2126224786 @default.
- W2153569343 cites W2128438887 @default.
- W2153569343 cites W2130247873 @default.
- W2153569343 cites W2132040345 @default.
- W2153569343 cites W2132631086 @default.
- W2153569343 cites W2139416101 @default.
- W2153569343 cites W2145408484 @default.
- W2153569343 cites W2145617564 @default.
- W2153569343 cites W2149160185 @default.
- W2153569343 cites W2155543766 @default.
- W2153569343 cites W2163507046 @default.
- W2153569343 cites W2168213791 @default.
- W2153569343 cites W2911964244 @default.
- W2153569343 cites W4237494090 @default.
- W2153569343 doi "https://doi.org/10.1016/j.envsoft.2015.10.007" @default.
- W2153569343 hasPublicationYear "2016" @default.
- W2153569343 type Work @default.
- W2153569343 sameAs 2153569343 @default.
- W2153569343 citedByCount "26" @default.
- W2153569343 countsByYear W21535693432016 @default.
- W2153569343 countsByYear W21535693432017 @default.
- W2153569343 countsByYear W21535693432018 @default.
- W2153569343 countsByYear W21535693432019 @default.
- W2153569343 countsByYear W21535693432020 @default.
- W2153569343 countsByYear W21535693432021 @default.
- W2153569343 countsByYear W21535693432022 @default.
- W2153569343 countsByYear W21535693432023 @default.
- W2153569343 crossrefType "journal-article" @default.
- W2153569343 hasAuthorship W2153569343A5013745815 @default.
- W2153569343 hasAuthorship W2153569343A5036222616 @default.
- W2153569343 hasConcept C105795698 @default.
- W2153569343 hasConcept C149782125 @default.
- W2153569343 hasConcept C161191863 @default.
- W2153569343 hasConcept C2778805511 @default.
- W2153569343 hasConcept C33923547 @default.
- W2153569343 hasConcept C41008148 @default.
- W2153569343 hasConcept C5274069 @default.
- W2153569343 hasConceptScore W2153569343C105795698 @default.
- W2153569343 hasConceptScore W2153569343C149782125 @default.
- W2153569343 hasConceptScore W2153569343C161191863 @default.
- W2153569343 hasConceptScore W2153569343C2778805511 @default.
- W2153569343 hasConceptScore W2153569343C33923547 @default.
- W2153569343 hasConceptScore W2153569343C41008148 @default.
- W2153569343 hasConceptScore W2153569343C5274069 @default.
- W2153569343 hasLocation W21535693431 @default.
- W2153569343 hasOpenAccess W2153569343 @default.
- W2153569343 hasPrimaryLocation W21535693431 @default.
- W2153569343 hasRelatedWork W1592683135 @default.
- W2153569343 hasRelatedWork W1987396722 @default.
- W2153569343 hasRelatedWork W2051221975 @default.
- W2153569343 hasRelatedWork W2119158312 @default.
- W2153569343 hasRelatedWork W2890595937 @default.
- W2153569343 hasRelatedWork W2962741511 @default.
- W2153569343 hasRelatedWork W2964313687 @default.
- W2153569343 hasRelatedWork W3094090087 @default.
- W2153569343 hasRelatedWork W3124272717 @default.
- W2153569343 hasRelatedWork W4233153962 @default.
- W2153569343 hasVolume "75" @default.
- W2153569343 isParatext "false" @default.
- W2153569343 isRetracted "false" @default.
- W2153569343 magId "2153569343" @default.
- W2153569343 workType "article" @default.