Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153577968> ?p ?o ?g. }
- W2153577968 endingPage "2" @default.
- W2153577968 startingPage "2" @default.
- W2153577968 abstract "We investigate the development of theories of types and computability via realizability. In the first part of the thesis, we suggest a general notion of realizability, based on weakly closed partial cartesian categories, which generalizes the usual notion of realizability over a partial combinatory algebra. We show how to construct categories of so-called assemblies and modest sets over any weakly closed partial cartesian category and that these categories of assemblies and modest sets model dependent predicate logic, that is, first-order logic over dependent type theory. We further characterize when a weakly closed partial cartesian category gives rise to a topos. Scott's category of equilogical spaces arises as a special case of our notion of realizability, namely as modest sets over the category of algebraic lattices. Thus, as a consequence, we conclude that the category of equilogical spaces models dependent predicate logic; we include a concrete description of this model. In the second part of the thesis, we study a notion of relative computability, which allows one to consider computable operations operating on not necessarily computable data. Given a partial combinatory algebra A, which we think of as continuous realizers, with a subalgebra A#, which we think of as computable realizers, there results a realizability topos RT(A,A#), which one intuitively can think of as having “continous objects and computable morphisms”. We study the relationship between this topos and the standard realizability toposes RT(A) and RT(A#) over A and A#. In particular, we show that there is a localic local map of toposes from RT(A,A#) to RT(A#). To obtain a better understanding of the relationship between the internal logics of RT(A,A#) and RT(A#), we then provide a complete axiomatization of arbitrary local maps of toposes. Based on this axiomatization we investigate the relationship between the internal logics of two toposes connected via a local map. Moreover, we suggest a modal logic for local maps. Returning to the realizability models we show in particular that the modal logic for local maps in the case of RT(A,A#) and RT(A#) can be seen as a modal logic for computability. Moreover, we characterize some interesting subcategories of RT(A,A#) (in much the same way as assemblies and modest sets are characterized in standard realizability toposes) and show the validity of some logical principles in RT(A,A#). This book is a slight revision of the author's Ph.D. thesis, written at Carnegie Mellon University, Pittsburgh, under the guidance of Prof. Dana S. Scott. This book is available in two formats: pdf and postscript. The pdf version has active hyper-references. May 23, 2000 Lars Birkedal" @default.
- W2153577968 created "2016-06-24" @default.
- W2153577968 creator A5055959064 @default.
- W2153577968 date "2000-01-01" @default.
- W2153577968 modified "2023-10-03" @default.
- W2153577968 title "Developing Theories of Types and Computability via Realizability" @default.
- W2153577968 cites W126568045 @default.
- W2153577968 cites W14582567 @default.
- W2153577968 cites W1498137988 @default.
- W2153577968 cites W1534018603 @default.
- W2153577968 cites W1557351111 @default.
- W2153577968 cites W1578388380 @default.
- W2153577968 cites W1582269801 @default.
- W2153577968 cites W1587799979 @default.
- W2153577968 cites W1596840381 @default.
- W2153577968 cites W1605765292 @default.
- W2153577968 cites W1615459473 @default.
- W2153577968 cites W182207098 @default.
- W2153577968 cites W1828583149 @default.
- W2153577968 cites W1919166405 @default.
- W2153577968 cites W1967628249 @default.
- W2153577968 cites W1986048956 @default.
- W2153577968 cites W1988612426 @default.
- W2153577968 cites W1998040359 @default.
- W2153577968 cites W2001462012 @default.
- W2153577968 cites W2005230371 @default.
- W2153577968 cites W2011659388 @default.
- W2153577968 cites W2019966914 @default.
- W2153577968 cites W2022837260 @default.
- W2153577968 cites W2042945291 @default.
- W2153577968 cites W2045614673 @default.
- W2153577968 cites W2049362364 @default.
- W2153577968 cites W2060621887 @default.
- W2153577968 cites W2068138513 @default.
- W2153577968 cites W2078095689 @default.
- W2153577968 cites W2085254659 @default.
- W2153577968 cites W2086788473 @default.
- W2153577968 cites W2088027070 @default.
- W2153577968 cites W2088862781 @default.
- W2153577968 cites W2093397547 @default.
- W2153577968 cites W2094410575 @default.
- W2153577968 cites W2107996244 @default.
- W2153577968 cites W2108885830 @default.
- W2153577968 cites W2120713972 @default.
- W2153577968 cites W2126730327 @default.
- W2153577968 cites W2150690980 @default.
- W2153577968 cites W2156964302 @default.
- W2153577968 cites W2158473287 @default.
- W2153577968 cites W2168025539 @default.
- W2153577968 cites W223002628 @default.
- W2153577968 cites W2230846987 @default.
- W2153577968 cites W2313175711 @default.
- W2153577968 cites W2489678876 @default.
- W2153577968 cites W2799057409 @default.
- W2153577968 cites W2802435120 @default.
- W2153577968 cites W28656058 @default.
- W2153577968 cites W3022591960 @default.
- W2153577968 cites W3177299375 @default.
- W2153577968 cites W36355091 @default.
- W2153577968 cites W58289307 @default.
- W2153577968 cites W91933939 @default.
- W2153577968 cites W969714970 @default.
- W2153577968 cites W125964128 @default.
- W2153577968 doi "https://doi.org/10.1016/s1571-0661(05)80642-5" @default.
- W2153577968 hasPublicationYear "2000" @default.
- W2153577968 type Work @default.
- W2153577968 sameAs 2153577968 @default.
- W2153577968 citedByCount "31" @default.
- W2153577968 countsByYear W21535779682013 @default.
- W2153577968 countsByYear W21535779682016 @default.
- W2153577968 countsByYear W21535779682017 @default.
- W2153577968 countsByYear W21535779682018 @default.
- W2153577968 countsByYear W21535779682020 @default.
- W2153577968 countsByYear W21535779682023 @default.
- W2153577968 crossrefType "journal-article" @default.
- W2153577968 hasAuthorship W2153577968A5055959064 @default.
- W2153577968 hasBestOaLocation W21535779681 @default.
- W2153577968 hasConcept C11413529 @default.
- W2153577968 hasConcept C118615104 @default.
- W2153577968 hasConcept C124952713 @default.
- W2153577968 hasConcept C136119220 @default.
- W2153577968 hasConcept C137212723 @default.
- W2153577968 hasConcept C140146324 @default.
- W2153577968 hasConcept C142362112 @default.
- W2153577968 hasConcept C152062344 @default.
- W2153577968 hasConcept C171032842 @default.
- W2153577968 hasConcept C182141236 @default.
- W2153577968 hasConcept C199360897 @default.
- W2153577968 hasConcept C202444582 @default.
- W2153577968 hasConcept C27318111 @default.
- W2153577968 hasConcept C2776378722 @default.
- W2153577968 hasConcept C2780617661 @default.
- W2153577968 hasConcept C33923547 @default.
- W2153577968 hasConcept C41008148 @default.
- W2153577968 hasConceptScore W2153577968C11413529 @default.
- W2153577968 hasConceptScore W2153577968C118615104 @default.
- W2153577968 hasConceptScore W2153577968C124952713 @default.
- W2153577968 hasConceptScore W2153577968C136119220 @default.