Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153642085> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2153642085 abstract "The agricultural sector will require more water in the near future to provide more food, fibre and fuels (Molden et al., 2007). As population increases and development calls for increased demand of food, a change in diet due to increased prosperity, and a recent focus on biofuels. This population growth coupled with industrialization and urbanization will result in an increasing demand for water and will have serious consequences on the conservation of water resources. Therefore, a rational approach to best water management practices is needed to balance water supply and demand. One approach to check if the supply is adequate to meet the demand is to account for the respective components in the water balance. Doing so provides an opportunity to search for possible ways to save water from one application and allocate it to another. Simulation models are strong in this regard; they can simulate the processes in the real system and predict the state variables at every stage in the simulation. The role of simulation models in understanding the processes in the soil-plant-atmosphere system has increased significantly in recent years. This is attributed to increased computing capabilities available today (Ines et al., 2002). Such mechanistic ecophysiological models integrate knowledge from data collection by various methods (e.g. GPS, field sampling, satellite remote sensing, radar etc.) and laboratory research. Simulations from such models are widely used to predict and simulate crop growth, yield, water requirements and greenhouse gas emissions. For monitoring agricultural crop production, growth of crops is modeled, for example, by using simulation models. Estimates of crop growth often are inaccurate for practical field conditions. Therefore, model simulations must be improved by incorporating information on the actual growth and development of field crops, for example, by using remote sensing data. Numerous researchers have also used remotely sensed data in conjunction with crop growth models via data assimilation for the purpose of improving soil moisture estimation (Entekhabi et al., 1994; Van Dams et al., 1997; Reichle et al. 2001; Ines et al., 2002; Kamble et al., 2008). The objective of data assimilation is to obtain the best estimate of the state of the system by combining observations with the forecast model’s first guess. Genetic algorithms (GA) are designed to search, discover and emphasize good solutions by applying selection and crossover techniques, inspired by nature, to supply solutions (Holland, 1975; Goldberg, 1989). GA operates on pieces of information like nature does on genes in the course of evolution. Changes in the genes of individuals from a given population allow selection of" @default.
- W2153642085 created "2016-06-24" @default.
- W2153642085 creator A5001995621 @default.
- W2153642085 creator A5073767179 @default.
- W2153642085 date "2011-03-16" @default.
- W2153642085 modified "2023-10-18" @default.
- W2153642085 title "Remotely Sensed Evapotranspiration Data Assimilation for Crop Growth Modeling" @default.
- W2153642085 cites W1497256448 @default.
- W2153642085 cites W1518879207 @default.
- W2153642085 cites W1527032396 @default.
- W2153642085 cites W1617589555 @default.
- W2153642085 cites W1980320347 @default.
- W2153642085 cites W1987735979 @default.
- W2153642085 cites W2000363461 @default.
- W2153642085 cites W2011996101 @default.
- W2153642085 cites W2018318189 @default.
- W2153642085 cites W2026114208 @default.
- W2153642085 cites W2055830445 @default.
- W2153642085 cites W2061003790 @default.
- W2153642085 cites W2093589181 @default.
- W2153642085 cites W2110551389 @default.
- W2153642085 cites W2114412855 @default.
- W2153642085 cites W2132561244 @default.
- W2153642085 cites W2135813137 @default.
- W2153642085 cites W2147611675 @default.
- W2153642085 cites W2152165967 @default.
- W2153642085 cites W2158766120 @default.
- W2153642085 cites W2170523364 @default.
- W2153642085 cites W3125497644 @default.
- W2153642085 doi "https://doi.org/10.5772/13990" @default.
- W2153642085 hasPublicationYear "2011" @default.
- W2153642085 type Work @default.
- W2153642085 sameAs 2153642085 @default.
- W2153642085 citedByCount "5" @default.
- W2153642085 countsByYear W21536420852013 @default.
- W2153642085 countsByYear W21536420852017 @default.
- W2153642085 countsByYear W21536420852020 @default.
- W2153642085 countsByYear W21536420852021 @default.
- W2153642085 crossrefType "book-chapter" @default.
- W2153642085 hasAuthorship W2153642085A5001995621 @default.
- W2153642085 hasAuthorship W2153642085A5073767179 @default.
- W2153642085 hasBestOaLocation W21536420851 @default.
- W2153642085 hasConcept C138885662 @default.
- W2153642085 hasConcept C153294291 @default.
- W2153642085 hasConcept C176783924 @default.
- W2153642085 hasConcept C18903297 @default.
- W2153642085 hasConcept C205649164 @default.
- W2153642085 hasConcept C24552861 @default.
- W2153642085 hasConcept C39432304 @default.
- W2153642085 hasConcept C41895202 @default.
- W2153642085 hasConcept C62649853 @default.
- W2153642085 hasConcept C75649859 @default.
- W2153642085 hasConcept C86803240 @default.
- W2153642085 hasConceptScore W2153642085C138885662 @default.
- W2153642085 hasConceptScore W2153642085C153294291 @default.
- W2153642085 hasConceptScore W2153642085C176783924 @default.
- W2153642085 hasConceptScore W2153642085C18903297 @default.
- W2153642085 hasConceptScore W2153642085C205649164 @default.
- W2153642085 hasConceptScore W2153642085C24552861 @default.
- W2153642085 hasConceptScore W2153642085C39432304 @default.
- W2153642085 hasConceptScore W2153642085C41895202 @default.
- W2153642085 hasConceptScore W2153642085C62649853 @default.
- W2153642085 hasConceptScore W2153642085C75649859 @default.
- W2153642085 hasConceptScore W2153642085C86803240 @default.
- W2153642085 hasLocation W21536420851 @default.
- W2153642085 hasOpenAccess W2153642085 @default.
- W2153642085 hasPrimaryLocation W21536420851 @default.
- W2153642085 hasRelatedWork W2035697161 @default.
- W2153642085 hasRelatedWork W2093527308 @default.
- W2153642085 hasRelatedWork W2899084033 @default.
- W2153642085 hasRelatedWork W2982072366 @default.
- W2153642085 hasRelatedWork W3000280057 @default.
- W2153642085 hasRelatedWork W3118359659 @default.
- W2153642085 hasRelatedWork W3147778585 @default.
- W2153642085 hasRelatedWork W3156495163 @default.
- W2153642085 hasRelatedWork W4229685971 @default.
- W2153642085 hasRelatedWork W4306398691 @default.
- W2153642085 isParatext "false" @default.
- W2153642085 isRetracted "false" @default.
- W2153642085 magId "2153642085" @default.
- W2153642085 workType "book-chapter" @default.