Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153670863> ?p ?o ?g. }
- W2153670863 endingPage "1762" @default.
- W2153670863 startingPage "1735" @default.
- W2153670863 abstract "The Yanque nonsulfide Pb-Zn deposit (inferred resources 12.5 Mt @ 3.7% Pb and @ 3.5% Zn) is located in the Andahuaylas-Yauri ore province (Cuzco, southern Peru). The deposit occurs within a base metal mineralized district, centered on the medium-sized Dolores porphyry copper. A thorough geological, mineralogical and geochemical study has carried out in order to define: the relationships between the Dolores Cu-porphyry ore and the Yanque Zn-Pb polymetallic mineralization, and the characteristics of the economic nonsulfide concentrations.Both sedimentary and igneous rocks constitute the backbone of the Yanque-Dolores area. The sedimentary lithologies belong to the Soraya, Mara and Ferrobamba Fms. (upper Jurassic-middle Cretaceous). The Yanque orebody is hosted by the Mara Fm., which prevailingly consists of a siliciclastic sedimentary breccia. The original sulfide mineralization consisted of galena, pyrite and sphalerite. The host rock has been affected by a strong hydrothermal alteration, characterized by prevailing sericite/illite, as in the typical porphyry-related phyllic-argillic alteration stage, and by minor kaolinite, dolomite and quartz. Minor element geochemistry, characterized by Sb, As, Mn, Ag and locally also by Cu, points to magmatic-hydrothermal related mineralizing fluids. The Pb isotopic compositions from Dolores and Yanque sulfides are similar, and are typical of the Tertiary magmatically-derived ores in this part of Peru. The hydrothermally altered rocks at Yanque have the same Pb isotopic compositions as the sulfides, thus confirming the hypothesis that the Yanque primary Zn-Pb mineralization may have been produced by hydrothermal circulation related to the emplacement of the Dolores Cu-porphyry, as it is the case of other porphyry Cu systems associated with polymetallic mineralization elsewhere. However, no simple genetic model for the mineralization involving just one fluid circulation episode is able to explain the data.The Yanque economic nonsulfide ore association consists of sauconite, hemimorphite, smithsonite and cerussite, which result from the weathering and alteration of the original sulfide mineralization. Zinc is allocated mainly in sauconite (Zn-smectite), rather than in carbonates: a factor strictly related to the prevailing siliciclastic character of the host rock. Distinctive features of the Yanque orebody are the comparable ore grades for both Pb and Zn (3.5% Zn and 3.7% Pb), and the inverse supergene chemical zoning. In fact, contrary to other supergene ores of this type, zinc prevails in the top zone of the Yanque deposit, whereas lead content increases with depth. Considering the different mobility of the two metals in solution, it may be assumed that most of the primary zinc that was the source for the Yanque nonsulfides was originally located far from the position occupied by the galena mineralization, whose remnants have been observed on site. Zinc sulfides may have been originally contained in the eroded rock volumes that surrounded the actual deposit: the zinc-rich solutions have possibly migrated through the siliciclastic Mara Fm. and precipitated the nonsulfide minerals by porosity filling and replacement processes. In this sense, the Yanque secondary Zn-Pb deposit could be considered as a special type of “Exotic” mineralization." @default.
- W2153670863 created "2016-06-24" @default.
- W2153670863 creator A5050261384 @default.
- W2153670863 creator A5057818463 @default.
- W2153670863 creator A5076251054 @default.
- W2153670863 creator A5079726398 @default.
- W2153670863 date "2014-07-09" @default.
- W2153670863 modified "2023-10-06" @default.
- W2153670863 title "The Yanque Prospect (Peru): From Polymetallic Zn-Pb Mineralization to a Nonsulfide Deposit" @default.
- W2153670863 cites W1586157160 @default.
- W2153670863 cites W1594514177 @default.
- W2153670863 cites W1910934224 @default.
- W2153670863 cites W1920329065 @default.
- W2153670863 cites W1963632978 @default.
- W2153670863 cites W1970920191 @default.
- W2153670863 cites W1972954480 @default.
- W2153670863 cites W1974070030 @default.
- W2153670863 cites W1976894814 @default.
- W2153670863 cites W1981796266 @default.
- W2153670863 cites W1985528315 @default.
- W2153670863 cites W1990784998 @default.
- W2153670863 cites W2004442877 @default.
- W2153670863 cites W2004770612 @default.
- W2153670863 cites W2006509035 @default.
- W2153670863 cites W2006665105 @default.
- W2153670863 cites W2013516114 @default.
- W2153670863 cites W2013747889 @default.
- W2153670863 cites W2014779624 @default.
- W2153670863 cites W2023391448 @default.
- W2153670863 cites W2025127061 @default.
- W2153670863 cites W2032103845 @default.
- W2153670863 cites W2032456215 @default.
- W2153670863 cites W2034362051 @default.
- W2153670863 cites W2035747979 @default.
- W2153670863 cites W2036527829 @default.
- W2153670863 cites W2041437835 @default.
- W2153670863 cites W2041752263 @default.
- W2153670863 cites W2042123157 @default.
- W2153670863 cites W2046206623 @default.
- W2153670863 cites W2047323504 @default.
- W2153670863 cites W2051861846 @default.
- W2153670863 cites W2051994261 @default.
- W2153670863 cites W2054489874 @default.
- W2153670863 cites W2064259012 @default.
- W2153670863 cites W2064542021 @default.
- W2153670863 cites W2076217033 @default.
- W2153670863 cites W2078174200 @default.
- W2153670863 cites W2081823548 @default.
- W2153670863 cites W2084208608 @default.
- W2153670863 cites W2085135087 @default.
- W2153670863 cites W2088124912 @default.
- W2153670863 cites W2090651312 @default.
- W2153670863 cites W2097419136 @default.
- W2153670863 cites W2098257595 @default.
- W2153670863 cites W2101054218 @default.
- W2153670863 cites W2101874561 @default.
- W2153670863 cites W2102351575 @default.
- W2153670863 cites W2103478905 @default.
- W2153670863 cites W2104587400 @default.
- W2153670863 cites W2117798232 @default.
- W2153670863 cites W2121657058 @default.
- W2153670863 cites W2123953908 @default.
- W2153670863 cites W2132463920 @default.
- W2153670863 cites W2133813681 @default.
- W2153670863 cites W2137363705 @default.
- W2153670863 cites W2141595078 @default.
- W2153670863 cites W2143229729 @default.
- W2153670863 cites W2150126527 @default.
- W2153670863 cites W2150765408 @default.
- W2153670863 cites W2154603570 @default.
- W2153670863 cites W2157026125 @default.
- W2153670863 cites W2165394332 @default.
- W2153670863 cites W2169445537 @default.
- W2153670863 cites W2169591704 @default.
- W2153670863 cites W2219613793 @default.
- W2153670863 cites W2261800625 @default.
- W2153670863 cites W2309636413 @default.
- W2153670863 cites W2332814939 @default.
- W2153670863 cites W2406424760 @default.
- W2153670863 cites W253551237 @default.
- W2153670863 cites W2741661489 @default.
- W2153670863 cites W2910890078 @default.
- W2153670863 cites W2958146260 @default.
- W2153670863 cites W2980495961 @default.
- W2153670863 cites W3132515255 @default.
- W2153670863 cites W3183302571 @default.
- W2153670863 cites W3208044876 @default.
- W2153670863 cites W3216324294 @default.
- W2153670863 cites W597086098 @default.
- W2153670863 cites W606924392 @default.
- W2153670863 cites W609544330 @default.
- W2153670863 cites W640968189 @default.
- W2153670863 cites W1968435392 @default.
- W2153670863 cites W2022380393 @default.
- W2153670863 cites W2229154494 @default.
- W2153670863 doi "https://doi.org/10.2113/econgeo.109.6.1735" @default.
- W2153670863 hasPublicationYear "2014" @default.
- W2153670863 type Work @default.