Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153770148> ?p ?o ?g. }
- W2153770148 endingPage "1261" @default.
- W2153770148 startingPage "1239" @default.
- W2153770148 abstract "We provide two weakly convergent algorithms for finding a zero of the sum of a maximally monotone operator, a cocoercive operator, and the normal cone to a closed vector subspace of a real Hilbert space. The methods exploit the intrinsic structure of the problem by activating explicitly the cocoercive operator in the first step, and taking advantage of a vector space decomposition in the second step. The second step of the first method is a Douglas–Rachford iteration involving the maximally monotone operator and the normal cone. In the second method, it is a proximal step involving the partial inverse of the maximally monotone operator with respect to the vector subspace. Connections between the proposed methods and other methods in the literature are provided. Applications to monotone inclusions with finitely many maximally monotone operators and optimization problems are examined." @default.
- W2153770148 created "2016-06-24" @default.
- W2153770148 creator A5017840787 @default.
- W2153770148 date "2013-12-05" @default.
- W2153770148 modified "2023-10-13" @default.
- W2153770148 title "Forward-Douglas–Rachford splitting and forward-partial inverse method for solving monotone inclusions" @default.
- W2153770148 cites W144276833 @default.
- W2153770148 cites W1519983908 @default.
- W2153770148 cites W1585386565 @default.
- W2153770148 cites W1967317714 @default.
- W2153770148 cites W1967558542 @default.
- W2153770148 cites W1970986119 @default.
- W2153770148 cites W1986364567 @default.
- W2153770148 cites W1998576973 @default.
- W2153770148 cites W2007437458 @default.
- W2153770148 cites W2019569173 @default.
- W2153770148 cites W2038497950 @default.
- W2153770148 cites W2039466093 @default.
- W2153770148 cites W2039939700 @default.
- W2153770148 cites W2040378863 @default.
- W2153770148 cites W2042532613 @default.
- W2153770148 cites W2047515743 @default.
- W2153770148 cites W2056578325 @default.
- W2153770148 cites W2058532290 @default.
- W2153770148 cites W2069435104 @default.
- W2153770148 cites W2074214991 @default.
- W2153770148 cites W2079235685 @default.
- W2153770148 cites W2114423093 @default.
- W2153770148 cites W2115706991 @default.
- W2153770148 cites W2126051190 @default.
- W2153770148 cites W2150195104 @default.
- W2153770148 cites W2152192979 @default.
- W2153770148 cites W2158065297 @default.
- W2153770148 cites W2315925303 @default.
- W2153770148 cites W3100489614 @default.
- W2153770148 cites W4229650096 @default.
- W2153770148 cites W4231269780 @default.
- W2153770148 cites W426962928 @default.
- W2153770148 cites W4300079171 @default.
- W2153770148 cites W4301283118 @default.
- W2153770148 doi "https://doi.org/10.1080/02331934.2013.855210" @default.
- W2153770148 hasPublicationYear "2013" @default.
- W2153770148 type Work @default.
- W2153770148 sameAs 2153770148 @default.
- W2153770148 citedByCount "66" @default.
- W2153770148 countsByYear W21537701482013 @default.
- W2153770148 countsByYear W21537701482014 @default.
- W2153770148 countsByYear W21537701482015 @default.
- W2153770148 countsByYear W21537701482016 @default.
- W2153770148 countsByYear W21537701482017 @default.
- W2153770148 countsByYear W21537701482018 @default.
- W2153770148 countsByYear W21537701482019 @default.
- W2153770148 countsByYear W21537701482020 @default.
- W2153770148 countsByYear W21537701482021 @default.
- W2153770148 countsByYear W21537701482022 @default.
- W2153770148 countsByYear W21537701482023 @default.
- W2153770148 crossrefType "journal-article" @default.
- W2153770148 hasAuthorship W2153770148A5017840787 @default.
- W2153770148 hasBestOaLocation W21537701482 @default.
- W2153770148 hasConcept C104317684 @default.
- W2153770148 hasConcept C11413529 @default.
- W2153770148 hasConcept C12715386 @default.
- W2153770148 hasConcept C132954091 @default.
- W2153770148 hasConcept C134306372 @default.
- W2153770148 hasConcept C158448853 @default.
- W2153770148 hasConcept C17020691 @default.
- W2153770148 hasConcept C176691602 @default.
- W2153770148 hasConcept C185592680 @default.
- W2153770148 hasConcept C201040074 @default.
- W2153770148 hasConcept C207467116 @default.
- W2153770148 hasConcept C2524010 @default.
- W2153770148 hasConcept C2834757 @default.
- W2153770148 hasConcept C28826006 @default.
- W2153770148 hasConcept C30014739 @default.
- W2153770148 hasConcept C32834561 @default.
- W2153770148 hasConcept C33923547 @default.
- W2153770148 hasConcept C55493867 @default.
- W2153770148 hasConcept C62799726 @default.
- W2153770148 hasConcept C72169020 @default.
- W2153770148 hasConcept C86339819 @default.
- W2153770148 hasConcept C99392333 @default.
- W2153770148 hasConceptScore W2153770148C104317684 @default.
- W2153770148 hasConceptScore W2153770148C11413529 @default.
- W2153770148 hasConceptScore W2153770148C12715386 @default.
- W2153770148 hasConceptScore W2153770148C132954091 @default.
- W2153770148 hasConceptScore W2153770148C134306372 @default.
- W2153770148 hasConceptScore W2153770148C158448853 @default.
- W2153770148 hasConceptScore W2153770148C17020691 @default.
- W2153770148 hasConceptScore W2153770148C176691602 @default.
- W2153770148 hasConceptScore W2153770148C185592680 @default.
- W2153770148 hasConceptScore W2153770148C201040074 @default.
- W2153770148 hasConceptScore W2153770148C207467116 @default.
- W2153770148 hasConceptScore W2153770148C2524010 @default.
- W2153770148 hasConceptScore W2153770148C2834757 @default.
- W2153770148 hasConceptScore W2153770148C28826006 @default.
- W2153770148 hasConceptScore W2153770148C30014739 @default.
- W2153770148 hasConceptScore W2153770148C32834561 @default.
- W2153770148 hasConceptScore W2153770148C33923547 @default.