Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153911700> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2153911700 endingPage "37" @default.
- W2153911700 startingPage "36" @default.
- W2153911700 abstract "Having not been verified in experiments yet, the concept of Majorana fermions was originally hypothesized in 1937 to describe the spin-1/2 particles that are their own antiparticles, in contrast to Dirac fermions [1], which differ from their antiparticles and covermost of wellknown fermions including quarks, leptons, electrons and their antiparticles. The different properties of these two classes of fermions are the mathematical consequence of modification that Majorana did to Dirac’s equation in depicting the spin-1/2 particles. After the modification, the imaginary numbers indispensable to understand antiparticles inDirac’s equation canbe abandoned and thus only real numbers are involved in Majorana’s equation. Recently, Majorana fermions have attracted a great deal of interest in condensedmatter physics, mainly because of their non-Abelian statistics that can be utilized for fault-tolerant quantum computing [2,3]. Theoretical investigations suggest that some exotic fermionic quasiparticles in a variety of solid state matters, such as the fractional quantum Hall state at filling factor of 5/2, ultra-cold atoms and chiral p-wave superconductors, should be identical to their antiquasiparticles and thus be Majorana fermions. In an Abrikosov vortex core of a superconductor, for example, the electron and hole excitations within the superconducting gap , i.e. the Andreev bound states, play the role of particle and antiparticle. The Majorana fermion comes out of the equal superposition of an electron (filled state at energy E above the Fermi level, EF) and a hole (empty state at energy –E below EF) excited exactly at the Fermi level, i.e. the Andreev bound state atE= 0. In a usual s-wave superconductor, where Cooper pairs have orbital angular momentum 0 and the electrons obey a Schrodinger-like, nonrelativistic equation, such a zero energy excitation is strictly forbidden and the lowest bound state is at E ∼ /2EF. In contrast, the zero mode Majorana particle is predicted to occur if the Cooper pairs have orbital angular momentum 1 (px ± ipy-wave). Majorana fermions in condensedmatters occur always in pair, whose superposition forms a conventional fermion, such as an electron or a hole. What scientists are chasing to discover are Majorana fermions that are spatially separated and thus prevented from overlapping. Such a highly delocalized pair of Majorana fermions forma fermionic state that can be protected from most types of decoherence, since a local perturbation may affect only one Majorana fermion of the pair. This topologically protected fermionic state can be used to store quantum information as a qubit and manipulated by physical exchange of the Majorana fermions basedon their non-Abelian statistics. Actually, the object showing non-Abelian statistics, i.e. an Ising anyon referred in the literature on topological quantum computation, is not the Majorana fermion by itself, but a topological defect hosting a Majorana fermion, such as an Abrikosov vortex of a px ± ipy-wave superconductor. Unfortunately, px ± ipy-wave superconductors in nature are not easily available, so the boom in searching for Majorana fermions in condensed matters had not come until 2008, when Fu and Kane at University of Pennsylvania theoretically proposed realistic proximity effect induced superconductivity in a strong topological insulator by combining it with an ordinary s-wave superconductor [4]. In this engineered superconductor, Cooper pairs are induced to the topological surface state via proximity effect, so that zero energy Andreev bound states at the vortex cores can occur. This is because the electrons in the normal state obey a Dirac-like equation and have their spin and momentum locked, so that a closed orbit produces a phase shift of π from the 360o rotation of the spin. This additional Berry phase converts destructive interference at E = 0 into constructive interference and thus results in a Majorana fermion at the Abrikosov vortex core. Here, the necessary underlying physical ingredient is the strong spin–orbit coupling that gives rise to an odd number of bands with momentumdependent spin crossing EF. Inspired by this idea, other proximity-induced superconductors were proposed using semiconductor nanowires and/or quantum wells with a strong spin–orbit coupling, in which Kramer’s degeneracy is lifted by Zeeman splitting due to an external magnetic field or amagnetic insulator in proximity [5–7]. Following the rapid theoretical developments, a number of experimental groups have taken up the challenge to create Majorana fermions by constructing the artificial p-wave-like superconductors. Last year, owing to welldeveloped nanoscale fabrication technology, Kouwenhoven’s group at Delft University of Technology succeeded in" @default.
- W2153911700 created "2016-06-24" @default.
- W2153911700 creator A5044420634 @default.
- W2153911700 creator A5055867975 @default.
- W2153911700 date "2014-01-17" @default.
- W2153911700 modified "2023-10-16" @default.
- W2153911700 title "Creating Majorana fermions in topological insulators" @default.
- W2153911700 cites W1487179853 @default.
- W2153911700 cites W1967766438 @default.
- W2153911700 cites W1973972788 @default.
- W2153911700 cites W2001923555 @default.
- W2153911700 cites W2003949154 @default.
- W2153911700 cites W2013500054 @default.
- W2153911700 cites W2024316027 @default.
- W2153911700 cites W2025311334 @default.
- W2153911700 cites W2031671478 @default.
- W2153911700 cites W2036676626 @default.
- W2153911700 cites W2055424520 @default.
- W2153911700 cites W2094158956 @default.
- W2153911700 cites W2095727049 @default.
- W2153911700 cites W2114682250 @default.
- W2153911700 cites W2115109350 @default.
- W2153911700 cites W2116325781 @default.
- W2153911700 cites W2160084444 @default.
- W2153911700 cites W2168226651 @default.
- W2153911700 cites W2171347225 @default.
- W2153911700 cites W3101967049 @default.
- W2153911700 cites W3105320508 @default.
- W2153911700 cites W3105605562 @default.
- W2153911700 doi "https://doi.org/10.1093/nsr/nwt036" @default.
- W2153911700 hasPublicationYear "2014" @default.
- W2153911700 type Work @default.
- W2153911700 sameAs 2153911700 @default.
- W2153911700 citedByCount "3" @default.
- W2153911700 countsByYear W21539117002015 @default.
- W2153911700 countsByYear W21539117002021 @default.
- W2153911700 countsByYear W21539117002022 @default.
- W2153911700 crossrefType "journal-article" @default.
- W2153911700 hasAuthorship W2153911700A5044420634 @default.
- W2153911700 hasAuthorship W2153911700A5055867975 @default.
- W2153911700 hasBestOaLocation W21539117001 @default.
- W2153911700 hasConcept C114614502 @default.
- W2153911700 hasConcept C121332964 @default.
- W2153911700 hasConcept C128911142 @default.
- W2153911700 hasConcept C184720557 @default.
- W2153911700 hasConcept C26873012 @default.
- W2153911700 hasConcept C2778761060 @default.
- W2153911700 hasConcept C33332235 @default.
- W2153911700 hasConcept C33923547 @default.
- W2153911700 hasConcept C52233224 @default.
- W2153911700 hasConcept C62520636 @default.
- W2153911700 hasConceptScore W2153911700C114614502 @default.
- W2153911700 hasConceptScore W2153911700C121332964 @default.
- W2153911700 hasConceptScore W2153911700C128911142 @default.
- W2153911700 hasConceptScore W2153911700C184720557 @default.
- W2153911700 hasConceptScore W2153911700C26873012 @default.
- W2153911700 hasConceptScore W2153911700C2778761060 @default.
- W2153911700 hasConceptScore W2153911700C33332235 @default.
- W2153911700 hasConceptScore W2153911700C33923547 @default.
- W2153911700 hasConceptScore W2153911700C52233224 @default.
- W2153911700 hasConceptScore W2153911700C62520636 @default.
- W2153911700 hasIssue "1" @default.
- W2153911700 hasLocation W21539117001 @default.
- W2153911700 hasOpenAccess W2153911700 @default.
- W2153911700 hasPrimaryLocation W21539117001 @default.
- W2153911700 hasRelatedWork W1596736583 @default.
- W2153911700 hasRelatedWork W1970367174 @default.
- W2153911700 hasRelatedWork W2011389284 @default.
- W2153911700 hasRelatedWork W2045294143 @default.
- W2153911700 hasRelatedWork W2060419366 @default.
- W2153911700 hasRelatedWork W2073997564 @default.
- W2153911700 hasRelatedWork W2149490930 @default.
- W2153911700 hasRelatedWork W2154083514 @default.
- W2153911700 hasRelatedWork W2168226651 @default.
- W2153911700 hasRelatedWork W3109211544 @default.
- W2153911700 hasVolume "1" @default.
- W2153911700 isParatext "false" @default.
- W2153911700 isRetracted "false" @default.
- W2153911700 magId "2153911700" @default.
- W2153911700 workType "article" @default.