Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153962014> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2153962014 abstract "Text retrieval systems typically produce a ranking of documents and let a user decide how far down that ranking to go. In contrast, programs that filter text streams, software that categorizes documents, agents which alert users, and many other IR systems must make decisions without human input or supervision. It is important to define what constitutes good effectiveness for these autonomous systems, tune the systems to achieve the highest possible effectiveness, and estimate how the effectiveness changes as new data is processed. We show how to do this for binary text classification systems, emphasizing that different goals for the system le ad to different optimal behaviors. Optimizing and estimating effectiveness is greatly aided if classifiers that explicitly estimate the probability of class membership are used. Ranked retrieval is the information retrieval (IR) researc her’s favorite tool for dealing with information overload. Ranked retrieval systems display documents in order of probability of releva nce or some similar measure. Users see the best documents first, anddecide how far down the ranking to go in examining the available information. The central role played by ranking in this appr oach has led researchers to evaluate IR systems primarily, often exclusively, on the quality of their rankings. (See, for instance , the TREC evaluations [1].) In some IR applications, however, ranking is not enough: A company provides an SDI (selective dissemination of information) service which filters newswire feeds. Relevant articles are faxed each morning to clients. Interaction between customer and system takes place infrequently. The cost of resources (tying up phone lines, fax machine paper, etc.) is a factor to consider in operating the system. A text categorization system assigns controlled vocabulary categories to incoming documents as they are stored in a text database. Cost cutting has eliminated manual checking of category assignments." @default.
- W2153962014 created "2016-06-24" @default.
- W2153962014 creator A5020081385 @default.
- W2153962014 date "1995-01-01" @default.
- W2153962014 modified "2023-09-27" @default.
- W2153962014 title "Evaluating and optimizing autonomous text classification systems" @default.
- W2153962014 cites W1479966022 @default.
- W2153962014 cites W1964801579 @default.
- W2153962014 cites W2032459394 @default.
- W2153962014 cites W2039024994 @default.
- W2153962014 cites W2048045485 @default.
- W2153962014 cites W2060704583 @default.
- W2153962014 cites W2085989833 @default.
- W2153962014 cites W2092488901 @default.
- W2153962014 cites W2115438237 @default.
- W2153962014 cites W2119529697 @default.
- W2153962014 cites W2801840425 @default.
- W2153962014 cites W3014600732 @default.
- W2153962014 cites W3017143921 @default.
- W2153962014 doi "https://doi.org/10.1145/215206.215366" @default.
- W2153962014 hasPublicationYear "1995" @default.
- W2153962014 type Work @default.
- W2153962014 sameAs 2153962014 @default.
- W2153962014 citedByCount "251" @default.
- W2153962014 countsByYear W21539620142012 @default.
- W2153962014 countsByYear W21539620142013 @default.
- W2153962014 countsByYear W21539620142014 @default.
- W2153962014 countsByYear W21539620142015 @default.
- W2153962014 countsByYear W21539620142016 @default.
- W2153962014 countsByYear W21539620142017 @default.
- W2153962014 countsByYear W21539620142018 @default.
- W2153962014 countsByYear W21539620142019 @default.
- W2153962014 countsByYear W21539620142020 @default.
- W2153962014 countsByYear W21539620142021 @default.
- W2153962014 countsByYear W21539620142022 @default.
- W2153962014 countsByYear W21539620142023 @default.
- W2153962014 crossrefType "proceedings-article" @default.
- W2153962014 hasAuthorship W2153962014A5020081385 @default.
- W2153962014 hasConcept C154945302 @default.
- W2153962014 hasConcept C204321447 @default.
- W2153962014 hasConcept C41008148 @default.
- W2153962014 hasConceptScore W2153962014C154945302 @default.
- W2153962014 hasConceptScore W2153962014C204321447 @default.
- W2153962014 hasConceptScore W2153962014C41008148 @default.
- W2153962014 hasLocation W21539620141 @default.
- W2153962014 hasOpenAccess W2153962014 @default.
- W2153962014 hasPrimaryLocation W21539620141 @default.
- W2153962014 hasRelatedWork W1512718085 @default.
- W2153962014 hasRelatedWork W1560657467 @default.
- W2153962014 hasRelatedWork W1569841287 @default.
- W2153962014 hasRelatedWork W2167662847 @default.
- W2153962014 hasRelatedWork W2293457016 @default.
- W2153962014 hasRelatedWork W2359001871 @default.
- W2153962014 hasRelatedWork W2369308426 @default.
- W2153962014 hasRelatedWork W2789919619 @default.
- W2153962014 hasRelatedWork W1551406738 @default.
- W2153962014 hasRelatedWork W2610387714 @default.
- W2153962014 isParatext "false" @default.
- W2153962014 isRetracted "false" @default.
- W2153962014 magId "2153962014" @default.
- W2153962014 workType "article" @default.