Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153991621> ?p ?o ?g. }
- W2153991621 endingPage "151" @default.
- W2153991621 startingPage "140" @default.
- W2153991621 abstract "This overview article gives a picture of multichannel analysis of high-frequency surface (Rayleigh and Love) waves developed mainly by research scientists at the Kansas Geological Survey, the University of Kansas and China University of Geosciences (Wuhan) during the last eighteen years by discussing dispersion imaging techniques, inversion systems, and real-world examples. Shear (S)-wave velocities of near-surface materials can be derived from inverting the dispersive phase velocities of high-frequency surface waves. Multichannel analysis of surface waves—MASW used phase information of high-frequency Rayleigh waves recorded on vertical component geophones to determine near-surface S-wave velocities. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that inversion with higher modes and the fundamental mode simultaneously can increase model resolution and an investigation depth. Multichannel analysis of Love waves—MALW used phase information of high-frequency Love waves recorded on horizontal (perpendicular to the direction of wave propagation) component geophones to determine S-wave velocities of shallow materials. Because of independence of compressional (P)-wave velocity, the MALW method has some attractive advantages, such as 1) Love-wave dispersion curves are simpler than Rayleigh wave's; 2) dispersion images of Love-wave energy have a higher signal to noise ratio and more focused than those generated from Rayleigh waves; and 3) inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves. To derive S-wave velocities of near-surface materials from high-frequency surface waves only utilizes their phase information. Feasibility of using their amplitude information to estimate near-surface quality factors (Qs and/or Qp) has been studied. Attenuation coefficients of high-frequency surface (Rayleigh and/or Love) waves can be calculated from their amplitude. And by inverting attenuation coefficients, it is feasible to obtain quality factors. Similar to inverting phase velocities of Love waves for S-wave velocities, attenuation coefficients of Love waves are independent of Qp, which makes inversion of attenuation coefficients of Love waves to estimate Qs simpler than that of Rayleigh waves. Both MASW and MALW methods to estimate near-surface S-wave velocities are non-invasive, non-destructive, environment-friendly, low-cost, fast, and in situ seismic methods and possess stable and efficient inversion algorithms to invert phase velocities of surface waves. Real world examples demonstrated that near-surface S-wave velocities derived from phase information are reliable and that methods discussed in the paper to estimate near-surface quality factors from amplitude information are feasible." @default.
- W2153991621 created "2016-06-24" @default.
- W2153991621 creator A5074813047 @default.
- W2153991621 date "2014-04-01" @default.
- W2153991621 modified "2023-10-01" @default.
- W2153991621 title "Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods" @default.
- W2153991621 cites W1927275380 @default.
- W2153991621 cites W1965322771 @default.
- W2153991621 cites W1967652956 @default.
- W2153991621 cites W1977273766 @default.
- W2153991621 cites W1978423631 @default.
- W2153991621 cites W1980862556 @default.
- W2153991621 cites W1981633816 @default.
- W2153991621 cites W1985322490 @default.
- W2153991621 cites W1985377452 @default.
- W2153991621 cites W1990302166 @default.
- W2153991621 cites W1992304369 @default.
- W2153991621 cites W1993270348 @default.
- W2153991621 cites W1994325700 @default.
- W2153991621 cites W1995228469 @default.
- W2153991621 cites W2000334937 @default.
- W2153991621 cites W2005208601 @default.
- W2153991621 cites W2006895430 @default.
- W2153991621 cites W2012836461 @default.
- W2153991621 cites W2013760202 @default.
- W2153991621 cites W2014287661 @default.
- W2153991621 cites W2021872449 @default.
- W2153991621 cites W2023223009 @default.
- W2153991621 cites W2025003584 @default.
- W2153991621 cites W2025695778 @default.
- W2153991621 cites W2030779670 @default.
- W2153991621 cites W2036988450 @default.
- W2153991621 cites W2041765898 @default.
- W2153991621 cites W2047319551 @default.
- W2153991621 cites W2053315555 @default.
- W2153991621 cites W2055511959 @default.
- W2153991621 cites W2058474279 @default.
- W2153991621 cites W2064648860 @default.
- W2153991621 cites W2064903949 @default.
- W2153991621 cites W2071175565 @default.
- W2153991621 cites W2078841894 @default.
- W2153991621 cites W2087070363 @default.
- W2153991621 cites W2106632637 @default.
- W2153991621 cites W2107542402 @default.
- W2153991621 cites W2109639836 @default.
- W2153991621 cites W2122095312 @default.
- W2153991621 cites W2124710319 @default.
- W2153991621 cites W2124969907 @default.
- W2153991621 cites W2126682510 @default.
- W2153991621 cites W2129692357 @default.
- W2153991621 cites W2133526188 @default.
- W2153991621 cites W2145921611 @default.
- W2153991621 cites W2151724644 @default.
- W2153991621 cites W2151938728 @default.
- W2153991621 cites W2171909447 @default.
- W2153991621 cites W2333306898 @default.
- W2153991621 cites W4232859801 @default.
- W2153991621 cites W4246566919 @default.
- W2153991621 cites W431927922 @default.
- W2153991621 cites W637015574 @default.
- W2153991621 doi "https://doi.org/10.1016/j.jappgeo.2014.01.016" @default.
- W2153991621 hasPublicationYear "2014" @default.
- W2153991621 type Work @default.
- W2153991621 sameAs 2153991621 @default.
- W2153991621 citedByCount "115" @default.
- W2153991621 countsByYear W21539916212014 @default.
- W2153991621 countsByYear W21539916212015 @default.
- W2153991621 countsByYear W21539916212016 @default.
- W2153991621 countsByYear W21539916212017 @default.
- W2153991621 countsByYear W21539916212018 @default.
- W2153991621 countsByYear W21539916212019 @default.
- W2153991621 countsByYear W21539916212020 @default.
- W2153991621 countsByYear W21539916212021 @default.
- W2153991621 countsByYear W21539916212022 @default.
- W2153991621 countsByYear W21539916212023 @default.
- W2153991621 crossrefType "journal-article" @default.
- W2153991621 hasAuthorship W2153991621A5074813047 @default.
- W2153991621 hasConcept C120665830 @default.
- W2153991621 hasConcept C121332964 @default.
- W2153991621 hasConcept C127313418 @default.
- W2153991621 hasConcept C143351421 @default.
- W2153991621 hasConcept C165205528 @default.
- W2153991621 hasConcept C177562468 @default.
- W2153991621 hasConcept C24890656 @default.
- W2153991621 hasConcept C26682833 @default.
- W2153991621 hasConcept C39557679 @default.
- W2153991621 hasConcept C43179477 @default.
- W2153991621 hasConcept C44886760 @default.
- W2153991621 hasConcept C51473458 @default.
- W2153991621 hasConcept C54187759 @default.
- W2153991621 hasConcept C8058405 @default.
- W2153991621 hasConcept C84174578 @default.
- W2153991621 hasConceptScore W2153991621C120665830 @default.
- W2153991621 hasConceptScore W2153991621C121332964 @default.
- W2153991621 hasConceptScore W2153991621C127313418 @default.
- W2153991621 hasConceptScore W2153991621C143351421 @default.
- W2153991621 hasConceptScore W2153991621C165205528 @default.
- W2153991621 hasConceptScore W2153991621C177562468 @default.