Matches in SemOpenAlex for { <https://semopenalex.org/work/W2153993385> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2153993385 endingPage "387" @default.
- W2153993385 startingPage "365" @default.
- W2153993385 abstract "This paper illustrates the versatility of biplot methodology when analysing multivariate data from diverse disciplines. The modern approach of Gower & Hand (1996) whereby biplots are regarded as multivariate analogues of ordinary scatter plots is utilised for extending biplot methodology introducing several novel applications. Focus is on biplot applications where the merits of principal component biplots and canonical variate analysis biplots are illustrated with data sets from higher education, the manufacturing industry, the mining industry, agriculture, finance and archaeology. It is shown how to equip biplots with quality regions, classification regions and acceptance regions; how a-bags superimposed on biplots provide a quantification of the multidimensional overlap of classes as well as enable biplots to be used with large data sets; how to use biplots for exploring multi-dimensional reality and in sophisticated classification procedures. Cet article illustre la souplesse de la méthodologie biplot vis-à-vis de l'analyse des données à plusieurs variables dans diverses disciplines. On utilise l'approche moderne de Gower & Hand (1996), où les biplots sont considérés comme des équivalents à plusieurs variables des graphes diffus ordinaires, pour étendre la méthodologie biplot en introduisant plusieurs applications originales. L'accent est mis sur les applications où les avantages des biplots àéléments principaux et des biplots issus d'analyse à variables canoniques sont illustrés sur des ensembles de données issus de l'éducation supérieure, des entreprises industrielles, de l'industrie minière, de l'agriculture, de la finance et de l'archéologie. On montre comment munir les biplots de domaines de qualité, de classification et d'acceptance; comment des alpha-sacs ajoutés aux biplots procurent une quantification de la superposition multidimensionnelle des classes en même temps qu'ils permettent d'utiliser les biplots avec des grands ensembles de données; et comment utiliser les biplots dans l'étude de détail de la réalité multidimensionnelle et dans des processus de classification compliqués." @default.
- W2153993385 created "2016-06-24" @default.
- W2153993385 creator A5002359168 @default.
- W2153993385 creator A5042363053 @default.
- W2153993385 date "2006-12-14" @default.
- W2153993385 modified "2023-09-26" @default.
- W2153993385 title "Analysing Your Multivariate Data as a Pictorial: A Case for Applying Biplot Methodology?" @default.
- W2153993385 cites W1997817345 @default.
- W2153993385 cites W2020617354 @default.
- W2153993385 cites W2039892753 @default.
- W2153993385 cites W2079100340 @default.
- W2153993385 cites W2104146802 @default.
- W2153993385 cites W2122800911 @default.
- W2153993385 cites W2147027519 @default.
- W2153993385 cites W2153775663 @default.
- W2153993385 cites W2165114602 @default.
- W2153993385 cites W4213385710 @default.
- W2153993385 cites W4251002338 @default.
- W2153993385 doi "https://doi.org/10.1111/j.1751-5823.2005.tb00154.x" @default.
- W2153993385 hasPublicationYear "2006" @default.
- W2153993385 type Work @default.
- W2153993385 sameAs 2153993385 @default.
- W2153993385 citedByCount "11" @default.
- W2153993385 countsByYear W21539933852012 @default.
- W2153993385 countsByYear W21539933852014 @default.
- W2153993385 countsByYear W21539933852016 @default.
- W2153993385 crossrefType "journal-article" @default.
- W2153993385 hasAuthorship W2153993385A5002359168 @default.
- W2153993385 hasAuthorship W2153993385A5042363053 @default.
- W2153993385 hasConcept C104317684 @default.
- W2153993385 hasConcept C105795698 @default.
- W2153993385 hasConcept C118483189 @default.
- W2153993385 hasConcept C135763542 @default.
- W2153993385 hasConcept C161584116 @default.
- W2153993385 hasConcept C33923547 @default.
- W2153993385 hasConcept C38180746 @default.
- W2153993385 hasConcept C41008148 @default.
- W2153993385 hasConcept C55493867 @default.
- W2153993385 hasConcept C86803240 @default.
- W2153993385 hasConceptScore W2153993385C104317684 @default.
- W2153993385 hasConceptScore W2153993385C105795698 @default.
- W2153993385 hasConceptScore W2153993385C118483189 @default.
- W2153993385 hasConceptScore W2153993385C135763542 @default.
- W2153993385 hasConceptScore W2153993385C161584116 @default.
- W2153993385 hasConceptScore W2153993385C33923547 @default.
- W2153993385 hasConceptScore W2153993385C38180746 @default.
- W2153993385 hasConceptScore W2153993385C41008148 @default.
- W2153993385 hasConceptScore W2153993385C55493867 @default.
- W2153993385 hasConceptScore W2153993385C86803240 @default.
- W2153993385 hasIssue "3" @default.
- W2153993385 hasLocation W21539933851 @default.
- W2153993385 hasOpenAccess W2153993385 @default.
- W2153993385 hasPrimaryLocation W21539933851 @default.
- W2153993385 hasRelatedWork W1606043652 @default.
- W2153993385 hasRelatedWork W2087652016 @default.
- W2153993385 hasRelatedWork W2088464407 @default.
- W2153993385 hasRelatedWork W2406638334 @default.
- W2153993385 hasRelatedWork W2412966912 @default.
- W2153993385 hasRelatedWork W3115001024 @default.
- W2153993385 hasRelatedWork W3185818227 @default.
- W2153993385 hasRelatedWork W323688281 @default.
- W2153993385 hasRelatedWork W90896962 @default.
- W2153993385 hasRelatedWork W1988047573 @default.
- W2153993385 hasVolume "73" @default.
- W2153993385 isParatext "false" @default.
- W2153993385 isRetracted "false" @default.
- W2153993385 magId "2153993385" @default.
- W2153993385 workType "article" @default.