Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154080884> ?p ?o ?g. }
- W2154080884 endingPage "49" @default.
- W2154080884 startingPage "37" @default.
- W2154080884 abstract "Visual reconstruction refers to extracting stable descriptions from visual data ([1]; A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, MA, 1987). Visual reconstruction problems are commonly formulated in an optimization framework and normally require the optimization of nonconvex functions especially when discontinuity preserving image/shape recovery is the goal. Example problems include, image restoration, surface reconstruction, shape from shading etc. Most existing deterministic methods fail to reach the global optimum and lack the generality to incorporate reasonably complex interactions between boolean valued line process variables used for representing the presence (absence) of discontinuities. Stochastic methods for solving such problems e.g. the simulated annealing algorithm or variants thereof do achieve a global optimum but are plagued by slow convergence rates. In this paper, we present a new hybrid search algorithm as an efficient solution for achieving the global optimum of the nonconvex function derived from a Markov random field formulation which allows for incorporation of complex interactions between the line process variables to better constraint the line processes. In the hybrid search, for the stochastic part, we develop an informed genetic algorithm (GA) while employing an incomplete Cholesky preconditioned conjugate gradient algorithm ([23]; S.H. Lai and B.C. Vemuri, Robust and efficient algorithms for optical flow computation, in: Proceedings of the International Symposium on Computer Vision, Coral Gables, FL, 1995, pp. 455–460) for the deterministic part. Our informed GA consists of a reproduction operator and an informed mutation operator. The informed mutation operator exploits specific domain knowledge in the search and is accomplished by the Gibbs sampler. Our hybrid search algorithm is highly parallelizable and leads to a globally optimal solution. The performance of our algorithm is demonstrated via experimental results on the sparse data surface reconstruction and the image restoration problem." @default.
- W2154080884 created "2016-06-24" @default.
- W2154080884 creator A5016378470 @default.
- W2154080884 creator A5073849580 @default.
- W2154080884 date "1999-01-01" @default.
- W2154080884 modified "2023-09-26" @default.
- W2154080884 title "Efficient hybrid search for visual reconstruction problems" @default.
- W2154080884 cites W109881820 @default.
- W2154080884 cites W127069151 @default.
- W2154080884 cites W1562634119 @default.
- W2154080884 cites W1566791367 @default.
- W2154080884 cites W1568834902 @default.
- W2154080884 cites W1577418081 @default.
- W2154080884 cites W1631253743 @default.
- W2154080884 cites W186419298 @default.
- W2154080884 cites W1992208469 @default.
- W2154080884 cites W1996692737 @default.
- W2154080884 cites W2019635781 @default.
- W2154080884 cites W2020278873 @default.
- W2154080884 cites W2020999234 @default.
- W2154080884 cites W2022231604 @default.
- W2154080884 cites W2024747177 @default.
- W2154080884 cites W2031879798 @default.
- W2154080884 cites W2043796649 @default.
- W2154080884 cites W2046425638 @default.
- W2154080884 cites W2082910045 @default.
- W2154080884 cites W2087157131 @default.
- W2154080884 cites W2094473717 @default.
- W2154080884 cites W2099256125 @default.
- W2154080884 cites W2112668648 @default.
- W2154080884 cites W2125412667 @default.
- W2154080884 cites W2131910503 @default.
- W2154080884 cites W2134781380 @default.
- W2154080884 cites W2139762693 @default.
- W2154080884 cites W2146766088 @default.
- W2154080884 cites W2149846618 @default.
- W2154080884 cites W2150629612 @default.
- W2154080884 cites W2151796618 @default.
- W2154080884 cites W2155235736 @default.
- W2154080884 cites W2158544978 @default.
- W2154080884 cites W2159979951 @default.
- W2154080884 cites W2162232298 @default.
- W2154080884 cites W2167325880 @default.
- W2154080884 cites W2169542477 @default.
- W2154080884 cites W2751023760 @default.
- W2154080884 cites W2913192828 @default.
- W2154080884 cites W2139592320 @default.
- W2154080884 doi "https://doi.org/10.1016/s0262-8856(98)00088-2" @default.
- W2154080884 hasPublicationYear "1999" @default.
- W2154080884 type Work @default.
- W2154080884 sameAs 2154080884 @default.
- W2154080884 citedByCount "10" @default.
- W2154080884 crossrefType "journal-article" @default.
- W2154080884 hasAuthorship W2154080884A5016378470 @default.
- W2154080884 hasAuthorship W2154080884A5073849580 @default.
- W2154080884 hasBestOaLocation W21540808842 @default.
- W2154080884 hasConcept C104317684 @default.
- W2154080884 hasConcept C11413529 @default.
- W2154080884 hasConcept C115961682 @default.
- W2154080884 hasConcept C124504099 @default.
- W2154080884 hasConcept C126255220 @default.
- W2154080884 hasConcept C126980161 @default.
- W2154080884 hasConcept C154945302 @default.
- W2154080884 hasConcept C158448853 @default.
- W2154080884 hasConcept C17020691 @default.
- W2154080884 hasConcept C185592680 @default.
- W2154080884 hasConcept C2778045648 @default.
- W2154080884 hasConcept C33923547 @default.
- W2154080884 hasConcept C41008148 @default.
- W2154080884 hasConcept C55493867 @default.
- W2154080884 hasConcept C86339819 @default.
- W2154080884 hasConceptScore W2154080884C104317684 @default.
- W2154080884 hasConceptScore W2154080884C11413529 @default.
- W2154080884 hasConceptScore W2154080884C115961682 @default.
- W2154080884 hasConceptScore W2154080884C124504099 @default.
- W2154080884 hasConceptScore W2154080884C126255220 @default.
- W2154080884 hasConceptScore W2154080884C126980161 @default.
- W2154080884 hasConceptScore W2154080884C154945302 @default.
- W2154080884 hasConceptScore W2154080884C158448853 @default.
- W2154080884 hasConceptScore W2154080884C17020691 @default.
- W2154080884 hasConceptScore W2154080884C185592680 @default.
- W2154080884 hasConceptScore W2154080884C2778045648 @default.
- W2154080884 hasConceptScore W2154080884C33923547 @default.
- W2154080884 hasConceptScore W2154080884C41008148 @default.
- W2154080884 hasConceptScore W2154080884C55493867 @default.
- W2154080884 hasConceptScore W2154080884C86339819 @default.
- W2154080884 hasIssue "1" @default.
- W2154080884 hasLocation W21540808841 @default.
- W2154080884 hasLocation W21540808842 @default.
- W2154080884 hasOpenAccess W2154080884 @default.
- W2154080884 hasPrimaryLocation W21540808841 @default.
- W2154080884 hasRelatedWork W1486517550 @default.
- W2154080884 hasRelatedWork W1964660066 @default.
- W2154080884 hasRelatedWork W2063202316 @default.
- W2154080884 hasRelatedWork W2148738811 @default.
- W2154080884 hasRelatedWork W2271022265 @default.
- W2154080884 hasRelatedWork W228124102 @default.
- W2154080884 hasRelatedWork W2334330152 @default.