Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154094669> ?p ?o ?g. }
- W2154094669 abstract "This monograph presents the main mathematical ideas in convex optimization. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by the seminal book of Nesterov, includes the analysis of the Ellipsoid Method, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, Mirror Descent, and Dual Averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), Saddle-Point Mirror Prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of Interior Point Methods. In stochastic optimization we discuss Stochastic Gradient Descent, mini-batches, Random Coordinate Descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods." @default.
- W2154094669 created "2016-06-24" @default.
- W2154094669 creator A5021842384 @default.
- W2154094669 date "2014-05-20" @default.
- W2154094669 modified "2023-09-27" @default.
- W2154094669 title "Theory of Convex Optimization for Machine Learning." @default.
- W2154094669 cites W131378802 @default.
- W2154094669 cites W1480376833 @default.
- W2154094669 cites W1505731132 @default.
- W2154094669 cites W1527197079 @default.
- W2154094669 cites W1568307856 @default.
- W2154094669 cites W1570963478 @default.
- W2154094669 cites W1632601927 @default.
- W2154094669 cites W181733065 @default.
- W2154094669 cites W1939652453 @default.
- W2154094669 cites W1967134148 @default.
- W2154094669 cites W1978259121 @default.
- W2154094669 cites W1985123706 @default.
- W2154094669 cites W1994616650 @default.
- W2154094669 cites W2016384870 @default.
- W2154094669 cites W2027560232 @default.
- W2154094669 cites W2032395696 @default.
- W2154094669 cites W2049934117 @default.
- W2154094669 cites W2053924317 @default.
- W2154094669 cites W2055582487 @default.
- W2154094669 cites W2063986634 @default.
- W2154094669 cites W2076304889 @default.
- W2154094669 cites W2089559088 @default.
- W2154094669 cites W2095984592 @default.
- W2154094669 cites W2096199223 @default.
- W2154094669 cites W2100556411 @default.
- W2154094669 cites W2106318612 @default.
- W2154094669 cites W2106728335 @default.
- W2154094669 cites W2107438106 @default.
- W2154094669 cites W2120350480 @default.
- W2154094669 cites W2130062883 @default.
- W2154094669 cites W2136885855 @default.
- W2154094669 cites W2151695970 @default.
- W2154094669 cites W2152898676 @default.
- W2154094669 cites W2159930037 @default.
- W2154094669 cites W2165323796 @default.
- W2154094669 cites W2167732364 @default.
- W2154094669 cites W2169399056 @default.
- W2154094669 cites W2242293964 @default.
- W2154094669 cites W2296319761 @default.
- W2154094669 cites W2594297742 @default.
- W2154094669 cites W2611147814 @default.
- W2154094669 cites W2611328865 @default.
- W2154094669 cites W3096194929 @default.
- W2154094669 cites W3119651796 @default.
- W2154094669 cites W3141595720 @default.
- W2154094669 cites W905619 @default.
- W2154094669 hasPublicationYear "2014" @default.
- W2154094669 type Work @default.
- W2154094669 sameAs 2154094669 @default.
- W2154094669 citedByCount "40" @default.
- W2154094669 countsByYear W21540946692014 @default.
- W2154094669 countsByYear W21540946692015 @default.
- W2154094669 countsByYear W21540946692016 @default.
- W2154094669 countsByYear W21540946692017 @default.
- W2154094669 countsByYear W21540946692018 @default.
- W2154094669 countsByYear W21540946692019 @default.
- W2154094669 countsByYear W21540946692020 @default.
- W2154094669 countsByYear W21540946692021 @default.
- W2154094669 crossrefType "posted-content" @default.
- W2154094669 hasAuthorship W2154094669A5021842384 @default.
- W2154094669 hasConcept C10494615 @default.
- W2154094669 hasConcept C105795698 @default.
- W2154094669 hasConcept C112680207 @default.
- W2154094669 hasConcept C114614502 @default.
- W2154094669 hasConcept C117160843 @default.
- W2154094669 hasConcept C125112378 @default.
- W2154094669 hasConcept C126255220 @default.
- W2154094669 hasConcept C127413603 @default.
- W2154094669 hasConcept C129782007 @default.
- W2154094669 hasConcept C137836250 @default.
- W2154094669 hasConcept C146978453 @default.
- W2154094669 hasConcept C153258448 @default.
- W2154094669 hasConcept C154945302 @default.
- W2154094669 hasConcept C15744967 @default.
- W2154094669 hasConcept C157972887 @default.
- W2154094669 hasConcept C194387892 @default.
- W2154094669 hasConcept C206688291 @default.
- W2154094669 hasConcept C2524010 @default.
- W2154094669 hasConcept C2681867 @default.
- W2154094669 hasConcept C2776029896 @default.
- W2154094669 hasConcept C2776637919 @default.
- W2154094669 hasConcept C33923547 @default.
- W2154094669 hasConcept C41008148 @default.
- W2154094669 hasConcept C50644808 @default.
- W2154094669 hasConcept C77805123 @default.
- W2154094669 hasConceptScore W2154094669C10494615 @default.
- W2154094669 hasConceptScore W2154094669C105795698 @default.
- W2154094669 hasConceptScore W2154094669C112680207 @default.
- W2154094669 hasConceptScore W2154094669C114614502 @default.
- W2154094669 hasConceptScore W2154094669C117160843 @default.
- W2154094669 hasConceptScore W2154094669C125112378 @default.
- W2154094669 hasConceptScore W2154094669C126255220 @default.
- W2154094669 hasConceptScore W2154094669C127413603 @default.
- W2154094669 hasConceptScore W2154094669C129782007 @default.