Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154172373> ?p ?o ?g. }
- W2154172373 endingPage "391" @default.
- W2154172373 startingPage "370" @default.
- W2154172373 abstract "This paper presents a definitive description of neural network methodology and provides an evaluation of its advantages and disadvantages relative to statistical procedures. The development of this rich class of models was inspired by the neural architecture of the human brain. These models mathematically emulate the neurophysical structure and decision making of the human brain, and, from a statistical perspective, are closely related to generalized linear models. Artificial neural networks are, however, nonlinear and use a different estimation procedure (feed forward and back propagation) than is used in traditional statistical models (least squares or maximum likelihood). Additionally, neural network models do not require the same restrictive assumptions about the relationship between the independent variables and dependent variable(s). Consequently, these models have already been very successfully applied in many diverse disciplines, including biology, psychology, statistics, mathematics, business, insurance, and computer science. We propose that neural networks will prove to be a valuable tool for marketers concerned with predicting consumer choice. We will demonstrate that neural networks provide superior predictions regarding consumer decision processes. In the context of modeling consumer judgment and decision making, for example, neural network models can offer significant improvement over traditional statistical methods because of their ability to capture nonlinear relationships associated with the use of noncompensatory decision rules. Our analysis reveals that neural networks have great potential for improving model predictions in nonlinear decision contexts without sacrificing performance in linear decision contexts. This paper provides a detailed introduction to neural networks that is understandable to both the academic researcher and the practitioner. This exposition is intended to provide both the intuition and the rigorous mathematical models needed for successful applications. In particular, a step-by-step outline of how to use the models is provided along with a discussion of the strengths and weaknesses of the model. We also address the robustness of the neural network models and discuss how far wrong you might go using neural network models versus traditional statistical methods. Herein we report the results of two studies. The first is a numerical simulation comparing the ability of neural networks with discriminant analysis and logistic regression at predicting choices made by decision rules that vary in complexity. This includes simulations involving two noncompensatory decision rules and one compensatory decision rule that involves attribute thresholds. In particular, we test a variant of the satisficing rule used by Johnson et al. (Johnson, Eric J., Robert J. Meyer, Sanjoy Ghose. 1989. When choice models fail: Compensatory models in negatively correlated environments. J. Marketing Res. 26(August) 255–270.) that sets a lower bound threshold on all attribute values and a “latitude of acceptance” model that sets both a lower threshold and an upper threshold on attribute values, mimicking an “ideal point” model (Coombs and Avrunin [Coombs, Clyde H., George S. Avrunin. 1977. Single peaked functions and the theory of preference. Psych. Rev. 84 216–230.]). We also test a compensatory rule that equally weights attributes and judges the acceptability of an alternative based on the sum of its attribute values. Thus, the simulations include both a linear environment, in which traditional statistical models might be deemed appropriate, as well as a nonlinear environment where statistical models might not be appropriate. The complexity of the decision rules was varied to test for any potential degradation in model performance. For these simulated data it is shown that, in general, the neural network model outperforms the commonly used statistical procedures in terms of explained variance and out-of-sample predictive accuracy. An empirical study bridging the behavioral and statistical lines of research was also conducted. Here we examine the predictive relationship between retail store image variables and consumer patronage behavior. A direct comparison between a neural network model and the more commonly encountered techniques of discriminant analysis and factor analysis followed by logistic regression is presented. Again the results reveal that the neural network model outperformed the statistical procedures in terms of explained variance and out-of-sample predictive accuracy. We conclude that neural network models offer superior predictive capabilities over traditional statistical methods in predicting consumer choice in nonlinear and linear settings." @default.
- W2154172373 created "2016-06-24" @default.
- W2154172373 creator A5016907446 @default.
- W2154172373 creator A5017618106 @default.
- W2154172373 creator A5054272646 @default.
- W2154172373 date "1997-11-01" @default.
- W2154172373 modified "2023-10-12" @default.
- W2154172373 title "A Comparative Analysis of Neural Networks and Statistical Methods for Predicting Consumer Choice" @default.
- W2154172373 cites W1545877870 @default.
- W2154172373 cites W1594358512 @default.
- W2154172373 cites W1602277858 @default.
- W2154172373 cites W1709719830 @default.
- W2154172373 cites W1967847912 @default.
- W2154172373 cites W1968182870 @default.
- W2154172373 cites W1971735090 @default.
- W2154172373 cites W1974268640 @default.
- W2154172373 cites W1986725357 @default.
- W2154172373 cites W1986808060 @default.
- W2154172373 cites W1987898601 @default.
- W2154172373 cites W1993325457 @default.
- W2154172373 cites W2008353316 @default.
- W2154172373 cites W2008724782 @default.
- W2154172373 cites W2014089538 @default.
- W2154172373 cites W2023038380 @default.
- W2154172373 cites W2023818831 @default.
- W2154172373 cites W2027197837 @default.
- W2154172373 cites W2030087685 @default.
- W2154172373 cites W2038530011 @default.
- W2154172373 cites W2038918463 @default.
- W2154172373 cites W2043315106 @default.
- W2154172373 cites W2046432185 @default.
- W2154172373 cites W2055686035 @default.
- W2154172373 cites W2059372149 @default.
- W2154172373 cites W2073057438 @default.
- W2154172373 cites W2074659328 @default.
- W2154172373 cites W2076724919 @default.
- W2154172373 cites W2078666525 @default.
- W2154172373 cites W2081443570 @default.
- W2154172373 cites W2083329137 @default.
- W2154172373 cites W2091392314 @default.
- W2154172373 cites W2091579301 @default.
- W2154172373 cites W2091987367 @default.
- W2154172373 cites W2095301394 @default.
- W2154172373 cites W2101927907 @default.
- W2154172373 cites W2113287505 @default.
- W2154172373 cites W2135255848 @default.
- W2154172373 cites W2145479188 @default.
- W2154172373 cites W2150510315 @default.
- W2154172373 cites W2163493113 @default.
- W2154172373 cites W22297218 @default.
- W2154172373 cites W2312528123 @default.
- W2154172373 cites W2331171826 @default.
- W2154172373 cites W256213940 @default.
- W2154172373 cites W46981156 @default.
- W2154172373 cites W74704794 @default.
- W2154172373 doi "https://doi.org/10.1287/mksc.16.4.370" @default.
- W2154172373 hasPublicationYear "1997" @default.
- W2154172373 type Work @default.
- W2154172373 sameAs 2154172373 @default.
- W2154172373 citedByCount "206" @default.
- W2154172373 countsByYear W21541723732012 @default.
- W2154172373 countsByYear W21541723732013 @default.
- W2154172373 countsByYear W21541723732014 @default.
- W2154172373 countsByYear W21541723732015 @default.
- W2154172373 countsByYear W21541723732016 @default.
- W2154172373 countsByYear W21541723732017 @default.
- W2154172373 countsByYear W21541723732018 @default.
- W2154172373 countsByYear W21541723732019 @default.
- W2154172373 countsByYear W21541723732020 @default.
- W2154172373 countsByYear W21541723732021 @default.
- W2154172373 countsByYear W21541723732022 @default.
- W2154172373 countsByYear W21541723732023 @default.
- W2154172373 crossrefType "journal-article" @default.
- W2154172373 hasAuthorship W2154172373A5016907446 @default.
- W2154172373 hasAuthorship W2154172373A5017618106 @default.
- W2154172373 hasAuthorship W2154172373A5054272646 @default.
- W2154172373 hasConcept C114289077 @default.
- W2154172373 hasConcept C119857082 @default.
- W2154172373 hasConcept C151730666 @default.
- W2154172373 hasConcept C154945302 @default.
- W2154172373 hasConcept C2779343474 @default.
- W2154172373 hasConcept C41008148 @default.
- W2154172373 hasConcept C50644808 @default.
- W2154172373 hasConcept C86803240 @default.
- W2154172373 hasConceptScore W2154172373C114289077 @default.
- W2154172373 hasConceptScore W2154172373C119857082 @default.
- W2154172373 hasConceptScore W2154172373C151730666 @default.
- W2154172373 hasConceptScore W2154172373C154945302 @default.
- W2154172373 hasConceptScore W2154172373C2779343474 @default.
- W2154172373 hasConceptScore W2154172373C41008148 @default.
- W2154172373 hasConceptScore W2154172373C50644808 @default.
- W2154172373 hasConceptScore W2154172373C86803240 @default.
- W2154172373 hasIssue "4" @default.
- W2154172373 hasLocation W21541723731 @default.
- W2154172373 hasOpenAccess W2154172373 @default.
- W2154172373 hasPrimaryLocation W21541723731 @default.
- W2154172373 hasRelatedWork W2961085424 @default.
- W2154172373 hasRelatedWork W3046775127 @default.