Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154207509> ?p ?o ?g. }
Showing items 1 to 48 of
48
with 100 items per page.
- W2154207509 abstract "High frequency data is a recent entrant to the world of statistics as they relate to the markets. With tick by tick data we get to see the microstructure of the markets and often are better able to see how they vary from the traditional portrayal. Traditional tools used to look at daily and weekly volatilities are not often very useful in timescales of seconds and minutes. In this paper we try to look at two of the most highly traded stocks in the Indian stock market. The large and small errors tend to cluster together, and thus autoregressive conditional heteroscedasticity models are introduced. First we look at ARCH models on tick by tick data of SBI. Then we look at the GARCH models – with two stocks SBI and TATA – and its variants such as PGARCH and EGARCH to try to see if we can predict the conditional variance. We also glance at the DCC GARCH model to see if a bivariate view gives us any new insights. Finally we try to sum up the various techniques by evaluating them according to their utility in estimating high frequency data." @default.
- W2154207509 created "2016-06-24" @default.
- W2154207509 creator A5081699205 @default.
- W2154207509 date "2010-01-01" @default.
- W2154207509 modified "2023-10-16" @default.
- W2154207509 title "Analysing High Frequency Data Using ARCH and GARCH Methods" @default.
- W2154207509 doi "https://doi.org/10.2139/ssrn.1611531" @default.
- W2154207509 hasPublicationYear "2010" @default.
- W2154207509 type Work @default.
- W2154207509 sameAs 2154207509 @default.
- W2154207509 citedByCount "0" @default.
- W2154207509 crossrefType "journal-article" @default.
- W2154207509 hasAuthorship W2154207509A5081699205 @default.
- W2154207509 hasConcept C105795698 @default.
- W2154207509 hasConcept C11312509 @default.
- W2154207509 hasConcept C127413603 @default.
- W2154207509 hasConcept C149782125 @default.
- W2154207509 hasConcept C23922673 @default.
- W2154207509 hasConcept C33923547 @default.
- W2154207509 hasConcept C41008148 @default.
- W2154207509 hasConcept C66938386 @default.
- W2154207509 hasConcept C91602232 @default.
- W2154207509 hasConceptScore W2154207509C105795698 @default.
- W2154207509 hasConceptScore W2154207509C11312509 @default.
- W2154207509 hasConceptScore W2154207509C127413603 @default.
- W2154207509 hasConceptScore W2154207509C149782125 @default.
- W2154207509 hasConceptScore W2154207509C23922673 @default.
- W2154207509 hasConceptScore W2154207509C33923547 @default.
- W2154207509 hasConceptScore W2154207509C41008148 @default.
- W2154207509 hasConceptScore W2154207509C66938386 @default.
- W2154207509 hasConceptScore W2154207509C91602232 @default.
- W2154207509 hasLocation W21542075091 @default.
- W2154207509 hasOpenAccess W2154207509 @default.
- W2154207509 hasPrimaryLocation W21542075091 @default.
- W2154207509 hasRelatedWork W1506632623 @default.
- W2154207509 hasRelatedWork W1895884442 @default.
- W2154207509 hasRelatedWork W1976201254 @default.
- W2154207509 hasRelatedWork W202422679 @default.
- W2154207509 hasRelatedWork W2176172092 @default.
- W2154207509 hasRelatedWork W2338994403 @default.
- W2154207509 hasRelatedWork W2356740222 @default.
- W2154207509 hasRelatedWork W2589689584 @default.
- W2154207509 hasRelatedWork W3122535831 @default.
- W2154207509 hasRelatedWork W3124463981 @default.
- W2154207509 isParatext "false" @default.
- W2154207509 isRetracted "false" @default.
- W2154207509 magId "2154207509" @default.
- W2154207509 workType "article" @default.