Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154307576> ?p ?o ?g. }
- W2154307576 endingPage "1209" @default.
- W2154307576 startingPage "1193" @default.
- W2154307576 abstract "A now common goal in medical research is to investigate the inter‐relationships between a repeatedly measured biomarker, measured with error, and the time to an event of interest. This form of question can be tackled with a joint longitudinal‐survival model, with the most common approach combining a longitudinal mixed effects model with a proportional hazards survival model, where the models are linked through shared random effects. In this article, we look at incorporating delayed entry (left truncation), which has received relatively little attention. The extension to delayed entry requires a second set of numerical integration, beyond that required in a standard joint model. We therefore implement two sets of fully adaptive Gauss–Hermite quadrature with nested Gauss–Kronrod quadrature (to allow time‐dependent association structures), conducted simultaneously, to evaluate the likelihood. We evaluate fully adaptive quadrature compared with previously proposed non‐adaptive quadrature through a simulation study, showing substantial improvements, both in terms of minimising bias and reducing computation time. We further investigate, through simulation, the consequences of misspecifying the longitudinal trajectory and its impact on estimates of association. Our scenarios showed the current value association structure to be very robust, compared with the rate of change that we found to be highly sensitive showing that assuming a simpler trend when the truth is more complex can lead to substantial bias. With emphasis on flexible parametric approaches, we generalise previous models by proposing the use of polynomials or splines to capture the longitudinal trend and restricted cubic splines to model the baseline log hazard function. The methods are illustrated on a dataset of breast cancer patients, modelling mammographic density jointly with survival, where we show how to incorporate density measurements prior to the at‐risk period, to make use of all the available information. User‐friendly Stata software is provided. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd." @default.
- W2154307576 created "2016-06-24" @default.
- W2154307576 creator A5002389217 @default.
- W2154307576 creator A5004828576 @default.
- W2154307576 creator A5018316113 @default.
- W2154307576 creator A5070073048 @default.
- W2154307576 creator A5088693535 @default.
- W2154307576 date "2015-10-29" @default.
- W2154307576 modified "2023-10-15" @default.
- W2154307576 title "Joint modelling of longitudinal and survival data: incorporating delayed entry and an assessment of model misspecification" @default.
- W2154307576 cites W125084057 @default.
- W2154307576 cites W1613586930 @default.
- W2154307576 cites W1759037751 @default.
- W2154307576 cites W1846287826 @default.
- W2154307576 cites W1950940723 @default.
- W2154307576 cites W1956221110 @default.
- W2154307576 cites W2002578058 @default.
- W2154307576 cites W2030840862 @default.
- W2154307576 cites W2032069066 @default.
- W2154307576 cites W2035357001 @default.
- W2154307576 cites W2052205592 @default.
- W2154307576 cites W2055290874 @default.
- W2154307576 cites W2065683696 @default.
- W2154307576 cites W2080076121 @default.
- W2154307576 cites W2092692836 @default.
- W2154307576 cites W2094991028 @default.
- W2154307576 cites W2102077252 @default.
- W2154307576 cites W2106327380 @default.
- W2154307576 cites W2126413785 @default.
- W2154307576 cites W2127682847 @default.
- W2154307576 cites W2136004986 @default.
- W2154307576 cites W2138610890 @default.
- W2154307576 cites W2139276809 @default.
- W2154307576 cites W2144270949 @default.
- W2154307576 cites W2151340153 @default.
- W2154307576 cites W2158758729 @default.
- W2154307576 cites W2161030125 @default.
- W2154307576 cites W2163060364 @default.
- W2154307576 cites W2473907474 @default.
- W2154307576 cites W2494169975 @default.
- W2154307576 cites W4240400659 @default.
- W2154307576 cites W4245666426 @default.
- W2154307576 cites W2158440661 @default.
- W2154307576 doi "https://doi.org/10.1002/sim.6779" @default.
- W2154307576 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5019272" @default.
- W2154307576 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26514596" @default.
- W2154307576 hasPublicationYear "2015" @default.
- W2154307576 type Work @default.
- W2154307576 sameAs 2154307576 @default.
- W2154307576 citedByCount "22" @default.
- W2154307576 countsByYear W21543075762016 @default.
- W2154307576 countsByYear W21543075762017 @default.
- W2154307576 countsByYear W21543075762018 @default.
- W2154307576 countsByYear W21543075762019 @default.
- W2154307576 countsByYear W21543075762020 @default.
- W2154307576 countsByYear W21543075762021 @default.
- W2154307576 countsByYear W21543075762022 @default.
- W2154307576 countsByYear W21543075762023 @default.
- W2154307576 crossrefType "journal-article" @default.
- W2154307576 hasAuthorship W2154307576A5002389217 @default.
- W2154307576 hasAuthorship W2154307576A5004828576 @default.
- W2154307576 hasAuthorship W2154307576A5018316113 @default.
- W2154307576 hasAuthorship W2154307576A5070073048 @default.
- W2154307576 hasAuthorship W2154307576A5088693535 @default.
- W2154307576 hasBestOaLocation W21543075761 @default.
- W2154307576 hasConcept C105795698 @default.
- W2154307576 hasConcept C106195933 @default.
- W2154307576 hasConcept C11413529 @default.
- W2154307576 hasConcept C117251300 @default.
- W2154307576 hasConcept C126255220 @default.
- W2154307576 hasConcept C127349201 @default.
- W2154307576 hasConcept C134306372 @default.
- W2154307576 hasConcept C149782125 @default.
- W2154307576 hasConcept C167196314 @default.
- W2154307576 hasConcept C167590341 @default.
- W2154307576 hasConcept C24574437 @default.
- W2154307576 hasConcept C27016315 @default.
- W2154307576 hasConcept C28826006 @default.
- W2154307576 hasConcept C33923547 @default.
- W2154307576 hasConcept C41008148 @default.
- W2154307576 hasConcept C48265008 @default.
- W2154307576 hasConceptScore W2154307576C105795698 @default.
- W2154307576 hasConceptScore W2154307576C106195933 @default.
- W2154307576 hasConceptScore W2154307576C11413529 @default.
- W2154307576 hasConceptScore W2154307576C117251300 @default.
- W2154307576 hasConceptScore W2154307576C126255220 @default.
- W2154307576 hasConceptScore W2154307576C127349201 @default.
- W2154307576 hasConceptScore W2154307576C134306372 @default.
- W2154307576 hasConceptScore W2154307576C149782125 @default.
- W2154307576 hasConceptScore W2154307576C167196314 @default.
- W2154307576 hasConceptScore W2154307576C167590341 @default.
- W2154307576 hasConceptScore W2154307576C24574437 @default.
- W2154307576 hasConceptScore W2154307576C27016315 @default.
- W2154307576 hasConceptScore W2154307576C28826006 @default.
- W2154307576 hasConceptScore W2154307576C33923547 @default.
- W2154307576 hasConceptScore W2154307576C41008148 @default.
- W2154307576 hasConceptScore W2154307576C48265008 @default.
- W2154307576 hasFunder F4320309229 @default.