Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154427238> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W2154427238 endingPage "2359" @default.
- W2154427238 startingPage "2346" @default.
- W2154427238 abstract "Trajectory prediction is widespread in mobile computing, and helps support wireless network operation, location-based services, and applications in pervasive computing. However, most prediction methods are based on very coarse geometric information such as visited base transceiver stations, which cover tens of kilometers. These approaches undermine the prediction accuracy, and thus restrict the variety of application. Recently, due to the advance and dissemination of mobile positioning technology, accurate location tracking has become prevalent. The prediction methods based on precise spatiotemporal information are then possible. Although the prediction accuracy can be raised, a massive amount of data gets involved, which is undoubtedly a huge impact on network bandwidth usage. Therefore, employing fine spatiotemporal information in an accurate prediction must be efficient. However, this problem is not addressed in many prediction methods. Consequently, this paper proposes a novel prediction framework that utilizes massive spatiotemporal samples efficiently. This is achieved by identifying and extracting the information that is beneficial to accurate prediction from the samples. The proposed prediction framework circumvents high bandwidth consumption while maintaining high accuracy and being feasible. The experiments in this study examine the performance of the proposed prediction framework. The results show that it outperforms other popular approaches." @default.
- W2154427238 created "2016-06-24" @default.
- W2154427238 creator A5038590380 @default.
- W2154427238 creator A5079905341 @default.
- W2154427238 date "2013-12-01" @default.
- W2154427238 modified "2023-09-25" @default.
- W2154427238 title "Utilizing Massive Spatiotemporal Samples for Efficient and Accurate Trajectory Prediction" @default.
- W2154427238 cites W1566658900 @default.
- W2154427238 cites W1971709713 @default.
- W2154427238 cites W1972923980 @default.
- W2154427238 cites W1976722103 @default.
- W2154427238 cites W1977262466 @default.
- W2154427238 cites W1979745145 @default.
- W2154427238 cites W1986255882 @default.
- W2154427238 cites W1989091128 @default.
- W2154427238 cites W1992956547 @default.
- W2154427238 cites W2009155608 @default.
- W2154427238 cites W2052897720 @default.
- W2154427238 cites W2054955372 @default.
- W2154427238 cites W2071325740 @default.
- W2154427238 cites W2085908278 @default.
- W2154427238 cites W2104650334 @default.
- W2154427238 cites W2110520460 @default.
- W2154427238 cites W2121990344 @default.
- W2154427238 cites W2122075562 @default.
- W2154427238 cites W2126562342 @default.
- W2154427238 cites W2131674566 @default.
- W2154427238 cites W2131698143 @default.
- W2154427238 cites W2134383396 @default.
- W2154427238 cites W2134537668 @default.
- W2154427238 cites W2136102209 @default.
- W2154427238 cites W2137688035 @default.
- W2154427238 cites W2138929676 @default.
- W2154427238 cites W2143040511 @default.
- W2154427238 cites W2144918665 @default.
- W2154427238 cites W2149891651 @default.
- W2154427238 cites W2153248811 @default.
- W2154427238 cites W2158975645 @default.
- W2154427238 cites W2161406034 @default.
- W2154427238 cites W2477834368 @default.
- W2154427238 cites W4251512373 @default.
- W2154427238 doi "https://doi.org/10.1109/tmc.2012.214" @default.
- W2154427238 hasPublicationYear "2013" @default.
- W2154427238 type Work @default.
- W2154427238 sameAs 2154427238 @default.
- W2154427238 citedByCount "10" @default.
- W2154427238 countsByYear W21544272382013 @default.
- W2154427238 countsByYear W21544272382014 @default.
- W2154427238 countsByYear W21544272382015 @default.
- W2154427238 countsByYear W21544272382017 @default.
- W2154427238 countsByYear W21544272382018 @default.
- W2154427238 countsByYear W21544272382020 @default.
- W2154427238 crossrefType "journal-article" @default.
- W2154427238 hasAuthorship W2154427238A5038590380 @default.
- W2154427238 hasAuthorship W2154427238A5079905341 @default.
- W2154427238 hasBestOaLocation W21544272382 @default.
- W2154427238 hasConcept C121332964 @default.
- W2154427238 hasConcept C124101348 @default.
- W2154427238 hasConcept C1276947 @default.
- W2154427238 hasConcept C13662910 @default.
- W2154427238 hasConcept C41008148 @default.
- W2154427238 hasConceptScore W2154427238C121332964 @default.
- W2154427238 hasConceptScore W2154427238C124101348 @default.
- W2154427238 hasConceptScore W2154427238C1276947 @default.
- W2154427238 hasConceptScore W2154427238C13662910 @default.
- W2154427238 hasConceptScore W2154427238C41008148 @default.
- W2154427238 hasIssue "12" @default.
- W2154427238 hasLocation W21544272381 @default.
- W2154427238 hasLocation W21544272382 @default.
- W2154427238 hasLocation W21544272383 @default.
- W2154427238 hasOpenAccess W2154427238 @default.
- W2154427238 hasPrimaryLocation W21544272381 @default.
- W2154427238 hasRelatedWork W1571484390 @default.
- W2154427238 hasRelatedWork W2026786578 @default.
- W2154427238 hasRelatedWork W2347219288 @default.
- W2154427238 hasRelatedWork W2348097614 @default.
- W2154427238 hasRelatedWork W2354822586 @default.
- W2154427238 hasRelatedWork W2366221835 @default.
- W2154427238 hasRelatedWork W2380716979 @default.
- W2154427238 hasRelatedWork W2461042672 @default.
- W2154427238 hasRelatedWork W2528175717 @default.
- W2154427238 hasRelatedWork W3149424243 @default.
- W2154427238 hasVolume "12" @default.
- W2154427238 isParatext "false" @default.
- W2154427238 isRetracted "false" @default.
- W2154427238 magId "2154427238" @default.
- W2154427238 workType "article" @default.