Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154553657> ?p ?o ?g. }
- W2154553657 abstract "The current study illustrates the utilization of artificial neural network in statistical methodology. More specifically in survival analysis and time series analysis, where both holds an important and wide use in many applications in our real life. We start our discussion by utilizing artificial neural network in survival analysis. In literature there exist two important methodology of utilizing artificial neural network in survival analysis based on discrete survival time method. We illustrate the idea of discrete survival time method and show how one can estimate the discrete model using artificial neural network. We present a comparison between the two methodology and update one of them to estimate survival time of competing risks. To fit a model using artificial neural network, you need to take care of two parts; first one is the neural network architecture and second part is the learning algorithm. Usually neural networks are trained using a non-linear optimization algorithm such as quasi Newton Raphson algorithm. Other learning algorithms are base on Bayesian inference. In this study we present a new learning technique by using a mixture of the two available methodologies for using Bayesian inference in training of neural networks. We have performed our analysis using real world data. We have used patients diagnosed with skin cancer in the United states from SEER database, under the supervision of the National Cancer Institute The second part of this dissertation presents the utilization of artificial neural to time series analysis. We present a new method of training recurrent artificial neural network with Hybrid Monte Carlo Sampling and compare our findings with the popular auto-regressive integrated moving average (ARIMA) model. We used the carbon dioxide monthly average emission to apply our comparison, data collected from NOAA." @default.
- W2154553657 created "2016-06-24" @default.
- W2154553657 creator A5076264684 @default.
- W2154553657 date "2015-01-01" @default.
- W2154553657 modified "2023-09-27" @default.
- W2154553657 title "Statistical Learning with Artificial Neural Network Applied to Health and Environmental Data" @default.
- W2154553657 cites W106556644 @default.
- W2154553657 cites W1514057341 @default.
- W2154553657 cites W1514205146 @default.
- W2154553657 cites W1517386993 @default.
- W2154553657 cites W1554663460 @default.
- W2154553657 cites W1567512734 @default.
- W2154553657 cites W1580788756 @default.
- W2154553657 cites W1586335931 @default.
- W2154553657 cites W1591346633 @default.
- W2154553657 cites W1600641683 @default.
- W2154553657 cites W1663973292 @default.
- W2154553657 cites W1973511951 @default.
- W2154553657 cites W1975024735 @default.
- W2154553657 cites W1977120657 @default.
- W2154553657 cites W1979300931 @default.
- W2154553657 cites W1983859058 @default.
- W2154553657 cites W1985309655 @default.
- W2154553657 cites W1992978513 @default.
- W2154553657 cites W1995341919 @default.
- W2154553657 cites W1997449813 @default.
- W2154553657 cites W1998174897 @default.
- W2154553657 cites W2000703258 @default.
- W2154553657 cites W2003119650 @default.
- W2154553657 cites W2005256561 @default.
- W2154553657 cites W2006470775 @default.
- W2154553657 cites W2010631330 @default.
- W2154553657 cites W2010976574 @default.
- W2154553657 cites W2011995986 @default.
- W2154553657 cites W2016427872 @default.
- W2154553657 cites W2017871126 @default.
- W2154553657 cites W202136896 @default.
- W2154553657 cites W2030408399 @default.
- W2154553657 cites W2033637705 @default.
- W2154553657 cites W2050099778 @default.
- W2154553657 cites W2050395935 @default.
- W2154553657 cites W2052060280 @default.
- W2154553657 cites W2053615983 @default.
- W2154553657 cites W2056886934 @default.
- W2154553657 cites W205750288 @default.
- W2154553657 cites W2058815839 @default.
- W2154553657 cites W2061747253 @default.
- W2154553657 cites W2071398699 @default.
- W2154553657 cites W2072487610 @default.
- W2154553657 cites W2072990165 @default.
- W2154553657 cites W2081984856 @default.
- W2154553657 cites W2083574998 @default.
- W2154553657 cites W2084068786 @default.
- W2154553657 cites W2088538739 @default.
- W2154553657 cites W2096764140 @default.
- W2154553657 cites W2099881680 @default.
- W2154553657 cites W2102121645 @default.
- W2154553657 cites W2108191500 @default.
- W2154553657 cites W2108673310 @default.
- W2154553657 cites W2111051539 @default.
- W2154553657 cites W2114717670 @default.
- W2154553657 cites W2115693635 @default.
- W2154553657 cites W2116560652 @default.
- W2154553657 cites W2117812871 @default.
- W2154553657 cites W2128084896 @default.
- W2154553657 cites W2131774270 @default.
- W2154553657 cites W2133873291 @default.
- W2154553657 cites W2140218006 @default.
- W2154553657 cites W2153136563 @default.
- W2154553657 cites W2154137718 @default.
- W2154553657 cites W2154683287 @default.
- W2154553657 cites W2157133617 @default.
- W2154553657 cites W2163287977 @default.
- W2154553657 cites W2165080652 @default.
- W2154553657 cites W2169707451 @default.
- W2154553657 cites W2509665950 @default.
- W2154553657 cites W2911546748 @default.
- W2154553657 cites W367859534 @default.
- W2154553657 cites W2114001875 @default.
- W2154553657 cites W2336126398 @default.
- W2154553657 hasPublicationYear "2015" @default.
- W2154553657 type Work @default.
- W2154553657 sameAs 2154553657 @default.
- W2154553657 citedByCount "2" @default.
- W2154553657 countsByYear W21545536572017 @default.
- W2154553657 countsByYear W21545536572018 @default.
- W2154553657 crossrefType "journal-article" @default.
- W2154553657 hasAuthorship W2154553657A5076264684 @default.
- W2154553657 hasConcept C108583219 @default.
- W2154553657 hasConcept C119857082 @default.
- W2154553657 hasConcept C134342201 @default.
- W2154553657 hasConcept C147168706 @default.
- W2154553657 hasConcept C151406439 @default.
- W2154553657 hasConcept C154945302 @default.
- W2154553657 hasConcept C175202392 @default.
- W2154553657 hasConcept C177973122 @default.
- W2154553657 hasConcept C2776214188 @default.
- W2154553657 hasConcept C41008148 @default.
- W2154553657 hasConcept C50644808 @default.
- W2154553657 hasConceptScore W2154553657C108583219 @default.