Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154562593> ?p ?o ?g. }
- W2154562593 endingPage "123" @default.
- W2154562593 startingPage "118" @default.
- W2154562593 abstract "More and more natural disasters are happening every year: floods, earthquakes, volcanic eruptions, etc. In order to reduce the risk of possible damages, governments all around the world are investing into development of Early Warning Systems (EWS) for environmental applications. The most important task of the EWS is identification of the onset of critical situations affecting environment and population, early enough to inform the authorities and general public. This paper describes an approach for monitoring of flood protections systems based on machine learning methods. An Artificial Intelligence (AI) component has been developed for detection of abnormal dike behaviour. The AI module has been integrated into an EWS platform of the UrbanFlood project (EU Seventh Framework Programme) and validated on real-time measurements from the sensors installed in a dike." @default.
- W2154562593 created "2016-06-24" @default.
- W2154562593 creator A5016093106 @default.
- W2154562593 creator A5020563993 @default.
- W2154562593 creator A5027523571 @default.
- W2154562593 creator A5046260390 @default.
- W2154562593 creator A5014952525 @default.
- W2154562593 date "2011-06-21" @default.
- W2154562593 modified "2023-10-14" @default.
- W2154562593 title "Machine learning methods for environmental monitoring and flood protection" @default.
- W2154562593 cites W1616497529 @default.
- W2154562593 cites W2000481344 @default.
- W2154562593 cites W2017203223 @default.
- W2154562593 cites W2080083479 @default.
- W2154562593 cites W2091336970 @default.
- W2154562593 cites W2104241170 @default.
- W2154562593 cites W2122957213 @default.
- W2154562593 cites W2156283588 @default.
- W2154562593 cites W2159876694 @default.
- W2154562593 cites W2166361350 @default.
- W2154562593 cites W2106394979 @default.
- W2154562593 doi "https://doi.org/10.5281/zenodo.1075060" @default.
- W2154562593 hasPublicationYear "2011" @default.
- W2154562593 type Work @default.
- W2154562593 sameAs 2154562593 @default.
- W2154562593 citedByCount "12" @default.
- W2154562593 countsByYear W21545625932012 @default.
- W2154562593 countsByYear W21545625932013 @default.
- W2154562593 countsByYear W21545625932014 @default.
- W2154562593 countsByYear W21545625932021 @default.
- W2154562593 countsByYear W21545625932022 @default.
- W2154562593 crossrefType "journal-article" @default.
- W2154562593 hasAuthorship W2154562593A5014952525 @default.
- W2154562593 hasAuthorship W2154562593A5016093106 @default.
- W2154562593 hasAuthorship W2154562593A5020563993 @default.
- W2154562593 hasAuthorship W2154562593A5027523571 @default.
- W2154562593 hasAuthorship W2154562593A5046260390 @default.
- W2154562593 hasConcept C107826830 @default.
- W2154562593 hasConcept C112930515 @default.
- W2154562593 hasConcept C116834253 @default.
- W2154562593 hasConcept C127313418 @default.
- W2154562593 hasConcept C127413603 @default.
- W2154562593 hasConcept C144024400 @default.
- W2154562593 hasConcept C144133560 @default.
- W2154562593 hasConcept C149923435 @default.
- W2154562593 hasConcept C153294291 @default.
- W2154562593 hasConcept C166566181 @default.
- W2154562593 hasConcept C166957645 @default.
- W2154562593 hasConcept C17409809 @default.
- W2154562593 hasConcept C17744445 @default.
- W2154562593 hasConcept C199539241 @default.
- W2154562593 hasConcept C205649164 @default.
- W2154562593 hasConcept C2777381055 @default.
- W2154562593 hasConcept C2779296788 @default.
- W2154562593 hasConcept C2908647359 @default.
- W2154562593 hasConcept C29825287 @default.
- W2154562593 hasConcept C39432304 @default.
- W2154562593 hasConcept C41008148 @default.
- W2154562593 hasConcept C539469273 @default.
- W2154562593 hasConcept C59822182 @default.
- W2154562593 hasConcept C74256435 @default.
- W2154562593 hasConcept C76155785 @default.
- W2154562593 hasConcept C77595967 @default.
- W2154562593 hasConcept C83893233 @default.
- W2154562593 hasConcept C86803240 @default.
- W2154562593 hasConcept C87717796 @default.
- W2154562593 hasConcept C91375879 @default.
- W2154562593 hasConceptScore W2154562593C107826830 @default.
- W2154562593 hasConceptScore W2154562593C112930515 @default.
- W2154562593 hasConceptScore W2154562593C116834253 @default.
- W2154562593 hasConceptScore W2154562593C127313418 @default.
- W2154562593 hasConceptScore W2154562593C127413603 @default.
- W2154562593 hasConceptScore W2154562593C144024400 @default.
- W2154562593 hasConceptScore W2154562593C144133560 @default.
- W2154562593 hasConceptScore W2154562593C149923435 @default.
- W2154562593 hasConceptScore W2154562593C153294291 @default.
- W2154562593 hasConceptScore W2154562593C166566181 @default.
- W2154562593 hasConceptScore W2154562593C166957645 @default.
- W2154562593 hasConceptScore W2154562593C17409809 @default.
- W2154562593 hasConceptScore W2154562593C17744445 @default.
- W2154562593 hasConceptScore W2154562593C199539241 @default.
- W2154562593 hasConceptScore W2154562593C205649164 @default.
- W2154562593 hasConceptScore W2154562593C2777381055 @default.
- W2154562593 hasConceptScore W2154562593C2779296788 @default.
- W2154562593 hasConceptScore W2154562593C2908647359 @default.
- W2154562593 hasConceptScore W2154562593C29825287 @default.
- W2154562593 hasConceptScore W2154562593C39432304 @default.
- W2154562593 hasConceptScore W2154562593C41008148 @default.
- W2154562593 hasConceptScore W2154562593C539469273 @default.
- W2154562593 hasConceptScore W2154562593C59822182 @default.
- W2154562593 hasConceptScore W2154562593C74256435 @default.
- W2154562593 hasConceptScore W2154562593C76155785 @default.
- W2154562593 hasConceptScore W2154562593C77595967 @default.
- W2154562593 hasConceptScore W2154562593C83893233 @default.
- W2154562593 hasConceptScore W2154562593C86803240 @default.
- W2154562593 hasConceptScore W2154562593C87717796 @default.
- W2154562593 hasConceptScore W2154562593C91375879 @default.
- W2154562593 hasIssue "6" @default.