Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154599668> ?p ?o ?g. }
- W2154599668 endingPage "297" @default.
- W2154599668 startingPage "284" @default.
- W2154599668 abstract "Abstract Drought forecasting is important for drought risk management. Considering the El Niño–Southern Oscillation (ENSO) variability and persistence in drought characteristics, this study developed a wavelet and fuzzy logic (WFL) combination model for long lead time drought forecasting. The idea of WFL is to separate each predictor and predictand into their frequency bands and then reconstruct the predictand series by using its predicted bands. The strongest-frequency bands of predictors and predictand were determined from the average wavelet spectra. Applying this combination model to the state of Texas, it was found that WFL had a significant improvement over the fuzzy logic model that did not use wavelet banding. Comparison with an artificial neural network (ANN) model and a coupled wavelet and ANN (WANN) model showed that WFL was more accurate for drought forecasting. Also, it should be noted that the ENSO variability is not a global precursor of drought. For this reason, prior to an application of such a data-driven model in different regions, significant work is required to identify appropriate independent predictors. Drought forecasting with longer lead times and higher accuracy is of significant value in engineering applications." @default.
- W2154599668 created "2016-06-24" @default.
- W2154599668 creator A5030009364 @default.
- W2154599668 creator A5064405823 @default.
- W2154599668 creator A5081632776 @default.
- W2154599668 date "2012-02-01" @default.
- W2154599668 modified "2023-10-10" @default.
- W2154599668 title "Long Lead Time Drought Forecasting Using a Wavelet and Fuzzy Logic Combination Model: A Case Study in Texas" @default.
- W2154599668 cites W1625562101 @default.
- W2154599668 cites W1631086084 @default.
- W2154599668 cites W1974645434 @default.
- W2154599668 cites W1978079670 @default.
- W2154599668 cites W1978309515 @default.
- W2154599668 cites W1987270962 @default.
- W2154599668 cites W1989427004 @default.
- W2154599668 cites W1999687643 @default.
- W2154599668 cites W2000167890 @default.
- W2154599668 cites W2002414354 @default.
- W2154599668 cites W2008404657 @default.
- W2154599668 cites W2009933637 @default.
- W2154599668 cites W2010199964 @default.
- W2154599668 cites W2011231125 @default.
- W2154599668 cites W2012340228 @default.
- W2154599668 cites W2012473345 @default.
- W2154599668 cites W2019207321 @default.
- W2154599668 cites W2025110407 @default.
- W2154599668 cites W2027176053 @default.
- W2154599668 cites W2027553546 @default.
- W2154599668 cites W2034139177 @default.
- W2154599668 cites W2037918450 @default.
- W2154599668 cites W2040399713 @default.
- W2154599668 cites W2042985051 @default.
- W2154599668 cites W2052754704 @default.
- W2154599668 cites W2056885659 @default.
- W2154599668 cites W2061519933 @default.
- W2154599668 cites W2068522471 @default.
- W2154599668 cites W2079325629 @default.
- W2154599668 cites W2079436405 @default.
- W2154599668 cites W2082327374 @default.
- W2154599668 cites W2082411706 @default.
- W2154599668 cites W2084954644 @default.
- W2154599668 cites W2086079757 @default.
- W2154599668 cites W2086188197 @default.
- W2154599668 cites W2096972703 @default.
- W2154599668 cites W2101220972 @default.
- W2154599668 cites W2102462750 @default.
- W2154599668 cites W2104157175 @default.
- W2154599668 cites W2110259481 @default.
- W2154599668 cites W2111798786 @default.
- W2154599668 cites W2113429172 @default.
- W2154599668 cites W2114676071 @default.
- W2154599668 cites W2136914327 @default.
- W2154599668 cites W2144280829 @default.
- W2154599668 cites W2150253499 @default.
- W2154599668 cites W2157878572 @default.
- W2154599668 cites W2174461843 @default.
- W2154599668 cites W4212771256 @default.
- W2154599668 doi "https://doi.org/10.1175/jhm-d-10-05007.1" @default.
- W2154599668 hasPublicationYear "2012" @default.
- W2154599668 type Work @default.
- W2154599668 sameAs 2154599668 @default.
- W2154599668 citedByCount "105" @default.
- W2154599668 countsByYear W21545996682012 @default.
- W2154599668 countsByYear W21545996682013 @default.
- W2154599668 countsByYear W21545996682014 @default.
- W2154599668 countsByYear W21545996682015 @default.
- W2154599668 countsByYear W21545996682016 @default.
- W2154599668 countsByYear W21545996682017 @default.
- W2154599668 countsByYear W21545996682018 @default.
- W2154599668 countsByYear W21545996682019 @default.
- W2154599668 countsByYear W21545996682020 @default.
- W2154599668 countsByYear W21545996682021 @default.
- W2154599668 countsByYear W21545996682022 @default.
- W2154599668 countsByYear W21545996682023 @default.
- W2154599668 crossrefType "journal-article" @default.
- W2154599668 hasAuthorship W2154599668A5030009364 @default.
- W2154599668 hasAuthorship W2154599668A5064405823 @default.
- W2154599668 hasAuthorship W2154599668A5081632776 @default.
- W2154599668 hasBestOaLocation W21545996681 @default.
- W2154599668 hasConcept C105795698 @default.
- W2154599668 hasConcept C127313418 @default.
- W2154599668 hasConcept C127413603 @default.
- W2154599668 hasConcept C143724316 @default.
- W2154599668 hasConcept C151406439 @default.
- W2154599668 hasConcept C151730666 @default.
- W2154599668 hasConcept C153294291 @default.
- W2154599668 hasConcept C154945302 @default.
- W2154599668 hasConcept C187320778 @default.
- W2154599668 hasConcept C205649164 @default.
- W2154599668 hasConcept C21547014 @default.
- W2154599668 hasConcept C2781009140 @default.
- W2154599668 hasConcept C2781468064 @default.
- W2154599668 hasConcept C33923547 @default.
- W2154599668 hasConcept C39432304 @default.
- W2154599668 hasConcept C41008148 @default.
- W2154599668 hasConcept C47432892 @default.
- W2154599668 hasConcept C49204034 @default.
- W2154599668 hasConcept C50644808 @default.