Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154733178> ?p ?o ?g. }
- W2154733178 endingPage "49" @default.
- W2154733178 startingPage "42" @default.
- W2154733178 abstract "•Genetic rescue is difficult to detect at the population level. •Recent studies show genetic rescue is a more powerful tool than has been appreciated. •Genomics provide a useful way to advance genetic rescue research and application. Genetic rescue can increase the fitness of small, imperiled populations via immigration. A suite of studies from the past decade highlights the value of genetic rescue in increasing population fitness. Nonetheless, genetic rescue has not been widely applied to conserve many of the threatened populations that it could benefit. In this review, we highlight recent studies of genetic rescue and place it in the larger context of theoretical and empirical developments in evolutionary and conservation biology. We also propose directions to help shape future research on genetic rescue. Genetic rescue is a tool that can stem biodiversity loss more than has been appreciated, provides population resilience, and will become increasingly useful if integrated with molecular advances in population genomics. Genetic rescue can increase the fitness of small, imperiled populations via immigration. A suite of studies from the past decade highlights the value of genetic rescue in increasing population fitness. Nonetheless, genetic rescue has not been widely applied to conserve many of the threatened populations that it could benefit. In this review, we highlight recent studies of genetic rescue and place it in the larger context of theoretical and empirical developments in evolutionary and conservation biology. We also propose directions to help shape future research on genetic rescue. Genetic rescue is a tool that can stem biodiversity loss more than has been appreciated, provides population resilience, and will become increasingly useful if integrated with molecular advances in population genomics. mean number of offspring per capita, measured as population growth rate (λ) or abundance (N). an increase in beneficial phenotypes in a population as a result of natural selection on genetic variation. a structured, iterative process of decision-making that includes system monitoring to reduce uncertainty. managed movement of individuals into populations to reduce local maladaptation to climate or other environmental change. combinations of alleles at different loci that reduce fitness. an increase in population growth resulting from adaptation to otherwise extinction-causing environmental stress from standing genetic variation, de novo mutation or gene flow. the relative difference in fitness between the theoretically fittest genotype and the average genotype in a population. Caused by deleterious alleles in the case of mutational load. Other types of load include segregation, drift, epistatic, and migration. an increase in population fitness (growth) owing to immigration of new alleles. an increase in genetic variation and relative, but not absolute, fitness owing to immigration of new alleles. elevated fitness of offspring from matings between genetically divergent individuals. cross-breeding between invasive and native species. reduced fitness of offspring from matings between genetically divergent individuals. the creation of hybrids with phenotypes more extreme than their parental lines." @default.
- W2154733178 created "2016-06-24" @default.
- W2154733178 creator A5046465487 @default.
- W2154733178 creator A5060426600 @default.
- W2154733178 creator A5064390526 @default.
- W2154733178 creator A5091690413 @default.
- W2154733178 date "2015-01-01" @default.
- W2154733178 modified "2023-10-17" @default.
- W2154733178 title "Genetic rescue to the rescue" @default.
- W2154733178 cites W1538178305 @default.
- W2154733178 cites W1923418350 @default.
- W2154733178 cites W1929441448 @default.
- W2154733178 cites W1969269652 @default.
- W2154733178 cites W1969320032 @default.
- W2154733178 cites W1969366519 @default.
- W2154733178 cites W1970723711 @default.
- W2154733178 cites W1970725680 @default.
- W2154733178 cites W1976507390 @default.
- W2154733178 cites W1989530362 @default.
- W2154733178 cites W2002764565 @default.
- W2154733178 cites W2004344243 @default.
- W2154733178 cites W2008860175 @default.
- W2154733178 cites W2019096838 @default.
- W2154733178 cites W2021736445 @default.
- W2154733178 cites W2021810789 @default.
- W2154733178 cites W2027370771 @default.
- W2154733178 cites W2028256931 @default.
- W2154733178 cites W2028558543 @default.
- W2154733178 cites W2031856012 @default.
- W2154733178 cites W2036507199 @default.
- W2154733178 cites W2040057823 @default.
- W2154733178 cites W2046094651 @default.
- W2154733178 cites W2046413498 @default.
- W2154733178 cites W2047100531 @default.
- W2154733178 cites W2048371396 @default.
- W2154733178 cites W2053063524 @default.
- W2154733178 cites W2054502424 @default.
- W2154733178 cites W2055076048 @default.
- W2154733178 cites W2056049821 @default.
- W2154733178 cites W2061018807 @default.
- W2154733178 cites W2078258560 @default.
- W2154733178 cites W2078476387 @default.
- W2154733178 cites W2083373139 @default.
- W2154733178 cites W2091458978 @default.
- W2154733178 cites W2098708505 @default.
- W2154733178 cites W2104726342 @default.
- W2154733178 cites W2108284696 @default.
- W2154733178 cites W2111674457 @default.
- W2154733178 cites W2115145438 @default.
- W2154733178 cites W2115932326 @default.
- W2154733178 cites W2118422005 @default.
- W2154733178 cites W2119504805 @default.
- W2154733178 cites W2122881779 @default.
- W2154733178 cites W2123886981 @default.
- W2154733178 cites W2124663629 @default.
- W2154733178 cites W2127167965 @default.
- W2154733178 cites W2130009535 @default.
- W2154733178 cites W2133012416 @default.
- W2154733178 cites W2137555103 @default.
- W2154733178 cites W2138403770 @default.
- W2154733178 cites W2140050442 @default.
- W2154733178 cites W2142306180 @default.
- W2154733178 cites W2142398490 @default.
- W2154733178 cites W2148370549 @default.
- W2154733178 cites W2149126429 @default.
- W2154733178 cites W2150665429 @default.
- W2154733178 cites W2150905832 @default.
- W2154733178 cites W2154227822 @default.
- W2154733178 cites W2158880823 @default.
- W2154733178 cites W2162157671 @default.
- W2154733178 cites W2167871404 @default.
- W2154733178 cites W2170259105 @default.
- W2154733178 cites W2170535437 @default.
- W2154733178 cites W2473895884 @default.
- W2154733178 cites W4250507124 @default.
- W2154733178 doi "https://doi.org/10.1016/j.tree.2014.10.009" @default.
- W2154733178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25435267" @default.
- W2154733178 hasPublicationYear "2015" @default.
- W2154733178 type Work @default.
- W2154733178 sameAs 2154733178 @default.
- W2154733178 citedByCount "558" @default.
- W2154733178 countsByYear W21547331782014 @default.
- W2154733178 countsByYear W21547331782015 @default.
- W2154733178 countsByYear W21547331782016 @default.
- W2154733178 countsByYear W21547331782017 @default.
- W2154733178 countsByYear W21547331782018 @default.
- W2154733178 countsByYear W21547331782019 @default.
- W2154733178 countsByYear W21547331782020 @default.
- W2154733178 countsByYear W21547331782021 @default.
- W2154733178 countsByYear W21547331782022 @default.
- W2154733178 countsByYear W21547331782023 @default.
- W2154733178 crossrefType "journal-article" @default.
- W2154733178 hasAuthorship W2154733178A5046465487 @default.
- W2154733178 hasAuthorship W2154733178A5060426600 @default.
- W2154733178 hasAuthorship W2154733178A5064390526 @default.
- W2154733178 hasAuthorship W2154733178A5091690413 @default.
- W2154733178 hasConcept C104317684 @default.
- W2154733178 hasConcept C144024400 @default.