Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154755364> ?p ?o ?g. }
- W2154755364 endingPage "247" @default.
- W2154755364 startingPage "169" @default.
- W2154755364 abstract "Continental extension may occur in two main different modes, narrow and wide rifting, which mainly differ in the width of the deformed region. A third mechanism, the core complex, has been considered either a distinct mode of extension or a local anomaly within wide rifts. In terms of causative processes, continental rifting may be explained by both active or passive mechanisms, which also differ in the volume of magmatic products and in the rheological properties and stratification of the extending lithosphere. Both numerical and analogue models have investigated the main parameters controlling the extension of a rheologically layered lithosphere. In particular, analogue models have highlighted that the style of deformation is mainly controlled by the competition between the total resistance of the lithosphere and the gravitational forces; this competition, in turn, is mainly controlled by boundary conditions, such as the applied strain rate and the rheological characteristics of the extending lithosphere. Magmatic bodies eventually present within the continental lithosphere may significantly affect the process of extension. Both the thermal and mechanical effects related to the presence of magma strongly weaken the lithosphere and localise strain; this effect may have important implications for the mode of continental extension. At a crustal scale, magmatic intrusions may affect significantly the local fault pattern also favouring the development of core complex structures. Results of analogue models, performed taking into account the presence of an initially underplated magma and reproducing various continental extensional settings, suggest a close interaction between deformation and magma emplacement during extension. Particularly, magmatic underplating influences deformation localising strain in correspondence to the low-viscosity body, while on the other hand, rift kinematics and associated deformation has a major control on the pattern of magma emplacement. In particular: During orthogonal rifting, magma is passively squeezed from an axial position towards the footwall of the major boundary faults; emplacement occurs in a lateral position in correspondence to lower crust domes. This process accounts for the close association between magmatism and the development of core complex structures, as well as for the occurrence of off-axis volcanoes in continental rifts. During oblique rifting, deformation causes magma to emplace within the main rift depression, giving rise to intrusions with oblique and en echelon patterns. In nature, these patterns are found in continental rifts and also in some oceanic ridges. Polyphase first orthogonal–second oblique rifting models suggest lateral squeezing and off-axis emplacement in the first phase and oblique en echelon intrusions in the successive oblique rifting phase. This evolution matches the magmatic and tectonic history of the Main Ethiopian Rift. Development of transfer zones between offset rift segments has a great influence on both magma migration and deformation. Particularly, magma accumulates in correspondence to the transfer zone, with a main flow pattern that is perpendicular to the extension direction. This pattern may explain the concentration of magmatism at transfer zones in continental rifts. Overall, analysis of centrifuge models and their comparison with nature suggest that deformation and magma emplacement in the continental crust are intimately related, and their interactions constitute a key factor in deciphering the evolution of both continental and oceanic rifts." @default.
- W2154755364 created "2016-06-24" @default.
- W2154755364 creator A5012802924 @default.
- W2154755364 creator A5048370392 @default.
- W2154755364 creator A5055619204 @default.
- W2154755364 creator A5057384154 @default.
- W2154755364 creator A5081933361 @default.
- W2154755364 creator A5084671680 @default.
- W2154755364 date "2003-11-01" @default.
- W2154755364 modified "2023-10-11" @default.
- W2154755364 title "Analogue modelling of continental extension: a review focused on the relations between the patterns of deformation and the presence of magma" @default.
- W2154755364 cites W1922701939 @default.
- W2154755364 cites W1952657320 @default.
- W2154755364 cites W1965590780 @default.
- W2154755364 cites W1966121046 @default.
- W2154755364 cites W1966430488 @default.
- W2154755364 cites W1966700579 @default.
- W2154755364 cites W1966944621 @default.
- W2154755364 cites W1968113056 @default.
- W2154755364 cites W1968324382 @default.
- W2154755364 cites W1970646921 @default.
- W2154755364 cites W1972739139 @default.
- W2154755364 cites W1973169596 @default.
- W2154755364 cites W1973936283 @default.
- W2154755364 cites W1974656229 @default.
- W2154755364 cites W1974697134 @default.
- W2154755364 cites W1977156689 @default.
- W2154755364 cites W1977568850 @default.
- W2154755364 cites W1977620703 @default.
- W2154755364 cites W1977742623 @default.
- W2154755364 cites W1978216542 @default.
- W2154755364 cites W1978831229 @default.
- W2154755364 cites W1979088365 @default.
- W2154755364 cites W1979331501 @default.
- W2154755364 cites W1980491738 @default.
- W2154755364 cites W1980578633 @default.
- W2154755364 cites W1982312509 @default.
- W2154755364 cites W1984028684 @default.
- W2154755364 cites W1985108036 @default.
- W2154755364 cites W1985371178 @default.
- W2154755364 cites W1988004226 @default.
- W2154755364 cites W1988132814 @default.
- W2154755364 cites W1988901849 @default.
- W2154755364 cites W1989693454 @default.
- W2154755364 cites W1990688502 @default.
- W2154755364 cites W1990912283 @default.
- W2154755364 cites W1993524516 @default.
- W2154755364 cites W1994323983 @default.
- W2154755364 cites W1995115331 @default.
- W2154755364 cites W1996382664 @default.
- W2154755364 cites W1996869390 @default.
- W2154755364 cites W1997147004 @default.
- W2154755364 cites W1998068180 @default.
- W2154755364 cites W2000033909 @default.
- W2154755364 cites W2000218403 @default.
- W2154755364 cites W2000404423 @default.
- W2154755364 cites W2000658638 @default.
- W2154755364 cites W2000832154 @default.
- W2154755364 cites W2001415035 @default.
- W2154755364 cites W2001515583 @default.
- W2154755364 cites W2001586419 @default.
- W2154755364 cites W2003485713 @default.
- W2154755364 cites W2004429248 @default.
- W2154755364 cites W2005831689 @default.
- W2154755364 cites W2007191764 @default.
- W2154755364 cites W2007595592 @default.
- W2154755364 cites W2008568398 @default.
- W2154755364 cites W2008934623 @default.
- W2154755364 cites W2011568720 @default.
- W2154755364 cites W2011864131 @default.
- W2154755364 cites W2011970992 @default.
- W2154755364 cites W2014276203 @default.
- W2154755364 cites W2015150069 @default.
- W2154755364 cites W2015187804 @default.
- W2154755364 cites W2015352647 @default.
- W2154755364 cites W2016508757 @default.
- W2154755364 cites W2018102620 @default.
- W2154755364 cites W2018190396 @default.
- W2154755364 cites W2018902424 @default.
- W2154755364 cites W2019132193 @default.
- W2154755364 cites W2019390190 @default.
- W2154755364 cites W2019727335 @default.
- W2154755364 cites W2020093204 @default.
- W2154755364 cites W2020433319 @default.
- W2154755364 cites W2020538500 @default.
- W2154755364 cites W2021244443 @default.
- W2154755364 cites W2022342538 @default.
- W2154755364 cites W2022648729 @default.
- W2154755364 cites W2023474267 @default.
- W2154755364 cites W2023598861 @default.
- W2154755364 cites W2024108081 @default.
- W2154755364 cites W2024208718 @default.
- W2154755364 cites W2024793243 @default.
- W2154755364 cites W2025214997 @default.
- W2154755364 cites W2026932112 @default.
- W2154755364 cites W2027191903 @default.
- W2154755364 cites W2027290427 @default.
- W2154755364 cites W2027523108 @default.