Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154934823> ?p ?o ?g. }
- W2154934823 endingPage "343" @default.
- W2154934823 startingPage "336" @default.
- W2154934823 abstract "Classification is an important problem in data mining. Decision tree induction is one of the most common techniques that are applied to solve the classification problem. Many decision tree induction algorithms have been proposed based on different attribute selection and pruning strategies. Although the patterns induced by decision trees are easy to interpret and comprehend compare to the patterns induced by other classification algorithms, the constructed decision trees may contain hundreds or thousand of nodes which are difficult to comprehend and interpret by the user who examines the patterns. For this reasons, the question of an appropriate constructing and providing a good pruning criteria have long been a topic of considerable debate. The main objective of such criteria is to create a tree such that the classification accuracy, when used on unseen data, is maximized and the tree size is minimized. Usually, most of decision tree algorithms perform splitting criteria to construct a tree first, then, prune the tree to find an accurate, simple, and comprehensible tree. Even after pruning, the decision tree constructed may be extremely huge and may reflect patterns, which are not interesting from the user point of view. In many scenarios, users are only interested in obtaining patterns that are interesting; thus, users may require obtaining a simple, and interpretable, but only approximate decision tree much better than an accurate tree that involves a lot of details. In this paper, we proposed a pruning approach that captures the user subjectivity to discoverer interesting patterns. The approach computes the subjective interestingness and uses it as a pruning criterion to prune away uninteresting patterns. The proposed framework helps in reducing the size of the induced model and maintaining the model. One of the features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The experimental results are quite promising." @default.
- W2154934823 created "2016-06-24" @default.
- W2154934823 creator A5020862055 @default.
- W2154934823 date "2009-01-01" @default.
- W2154934823 modified "2023-09-27" @default.
- W2154934823 title "Pruning Based Interestingness of Mined Classification Patterns" @default.
- W2154934823 cites W1483135265 @default.
- W2154934823 cites W1530770259 @default.
- W2154934823 cites W1570329253 @default.
- W2154934823 cites W157477790 @default.
- W2154934823 cites W1577527731 @default.
- W2154934823 cites W1604329830 @default.
- W2154934823 cites W1817108370 @default.
- W2154934823 cites W2033139852 @default.
- W2154934823 cites W2088163015 @default.
- W2154934823 cites W2109272824 @default.
- W2154934823 cites W2112841646 @default.
- W2154934823 cites W2125055259 @default.
- W2154934823 cites W2137676449 @default.
- W2154934823 cites W2140190241 @default.
- W2154934823 cites W2149706766 @default.
- W2154934823 cites W2799061466 @default.
- W2154934823 cites W3139831614 @default.
- W2154934823 hasPublicationYear "2009" @default.
- W2154934823 type Work @default.
- W2154934823 sameAs 2154934823 @default.
- W2154934823 citedByCount "3" @default.
- W2154934823 countsByYear W21549348232012 @default.
- W2154934823 countsByYear W21549348232015 @default.
- W2154934823 countsByYear W21549348232017 @default.
- W2154934823 crossrefType "journal-article" @default.
- W2154934823 hasAuthorship W2154934823A5020862055 @default.
- W2154934823 hasConcept C10229987 @default.
- W2154934823 hasConcept C108010975 @default.
- W2154934823 hasConcept C111472728 @default.
- W2154934823 hasConcept C113174947 @default.
- W2154934823 hasConcept C119857082 @default.
- W2154934823 hasConcept C124101348 @default.
- W2154934823 hasConcept C134306372 @default.
- W2154934823 hasConcept C138885662 @default.
- W2154934823 hasConcept C154945302 @default.
- W2154934823 hasConcept C183931066 @default.
- W2154934823 hasConcept C199360897 @default.
- W2154934823 hasConcept C2524010 @default.
- W2154934823 hasConcept C2780586882 @default.
- W2154934823 hasConcept C2780801425 @default.
- W2154934823 hasConcept C28719098 @default.
- W2154934823 hasConcept C33923547 @default.
- W2154934823 hasConcept C41008148 @default.
- W2154934823 hasConcept C5481197 @default.
- W2154934823 hasConcept C6557445 @default.
- W2154934823 hasConcept C84525736 @default.
- W2154934823 hasConcept C86803240 @default.
- W2154934823 hasConceptScore W2154934823C10229987 @default.
- W2154934823 hasConceptScore W2154934823C108010975 @default.
- W2154934823 hasConceptScore W2154934823C111472728 @default.
- W2154934823 hasConceptScore W2154934823C113174947 @default.
- W2154934823 hasConceptScore W2154934823C119857082 @default.
- W2154934823 hasConceptScore W2154934823C124101348 @default.
- W2154934823 hasConceptScore W2154934823C134306372 @default.
- W2154934823 hasConceptScore W2154934823C138885662 @default.
- W2154934823 hasConceptScore W2154934823C154945302 @default.
- W2154934823 hasConceptScore W2154934823C183931066 @default.
- W2154934823 hasConceptScore W2154934823C199360897 @default.
- W2154934823 hasConceptScore W2154934823C2524010 @default.
- W2154934823 hasConceptScore W2154934823C2780586882 @default.
- W2154934823 hasConceptScore W2154934823C2780801425 @default.
- W2154934823 hasConceptScore W2154934823C28719098 @default.
- W2154934823 hasConceptScore W2154934823C33923547 @default.
- W2154934823 hasConceptScore W2154934823C41008148 @default.
- W2154934823 hasConceptScore W2154934823C5481197 @default.
- W2154934823 hasConceptScore W2154934823C6557445 @default.
- W2154934823 hasConceptScore W2154934823C84525736 @default.
- W2154934823 hasConceptScore W2154934823C86803240 @default.
- W2154934823 hasLocation W21549348231 @default.
- W2154934823 hasOpenAccess W2154934823 @default.
- W2154934823 hasPrimaryLocation W21549348231 @default.
- W2154934823 hasRelatedWork W1491964404 @default.
- W2154934823 hasRelatedWork W1981526463 @default.
- W2154934823 hasRelatedWork W1983399362 @default.
- W2154934823 hasRelatedWork W2012576936 @default.
- W2154934823 hasRelatedWork W2044834101 @default.
- W2154934823 hasRelatedWork W2074726512 @default.
- W2154934823 hasRelatedWork W2122577144 @default.
- W2154934823 hasRelatedWork W2192818881 @default.
- W2154934823 hasRelatedWork W2311521158 @default.
- W2154934823 hasRelatedWork W2359689226 @default.
- W2154934823 hasRelatedWork W2954300338 @default.
- W2154934823 hasRelatedWork W3023314443 @default.
- W2154934823 hasRelatedWork W3135087169 @default.
- W2154934823 hasRelatedWork W318839489 @default.
- W2154934823 hasRelatedWork W3197772267 @default.
- W2154934823 hasRelatedWork W3205689103 @default.
- W2154934823 hasRelatedWork W63816145 @default.
- W2154934823 hasRelatedWork W98552495 @default.
- W2154934823 hasRelatedWork W2156955919 @default.
- W2154934823 hasRelatedWork W30262528 @default.
- W2154934823 hasVolume "6" @default.