Matches in SemOpenAlex for { <https://semopenalex.org/work/W2154948425> ?p ?o ?g. }
- W2154948425 abstract "In this dissertation, a series of experimental and simulation studies were carried out in an effort to fabricate and characterize nanostructured silicon thin film solar cells. The nanostructures were designed for the purposes of enhancing light trapping within the active layer and improving the electrical performances of functional devices. Silicon nanostructured thin film solar cell is believed to be important because its utilization of light trapping technology which enhances light absorption within the thin film material. In this dissertation, processes in fabricating silicon nanostructures were developed. We firstly summarized an electroless chemical etching technique using polystyrene nanospheres as self-assembled mask to fabricate size-controlled, periodic silicon nanopillars (SiNPs) and subsequent silicon nanocones (SiNCs) arrays. The nanocones were obtained based on the nanopillar structure using ammonia-related etching chemistry. With solution-based processes, the cost of the procedures is limited. The diameter, height, and period of the nanopillars and cones are systematically controlled. Furthermore, we transferred this technology onto silicon thin film and demonstrated the accomplishment of silicon thin film nanostructures. SiNPs and SiNCs on glass were obtained by conventional reactive ion etching technique. The etching was masked by PS nanospheres again, and different morphologies (diameter and periods ranging from 200nm to 800nm) of patterned arrays were obtained with different masking condition and etching parameters. Optical properties such as reflectance and absorption of these patterned silicon-on-glass nanostructures were characterized. With the integration of SiNPs and SiNCs, a significant reduction in reflectance and increase in absorption were observed. Meanwhile, simulation efforts were also made in analyzing the optical effects of our nanostructures. Satisfactory results were achieved as simulations agreed in-principle with experimental results, thus serving as a theoretical support of our work. The simulation was performed using FDTD commercial software Lumerical.Furthermore, solar cells were fabricated subsequently. Due to the enhanced properties in optical absorption, the external quantum efficiency and short circuit current of cells based on these nanostructures demonstrated a remarkable increase. The EQE for nanostructured sample can reach over 90% at wavelength of 600nm against only 60% of control sample. The cell efficiency is also increased from 1.6% for flat thin film cell to 3.8% for nanostructured sample. The impact of various nanostructures and dimensions were investigated ranging from 200 nm to 800 nm.In summary, this dissertation firstly addresses the development and characterization of nanostructured silicon on both wafer and glass substrates, followed by further influences on subsequent nanostructured thin film photovoltaic (PV) devices. The work done will offer opportunities and approaches to further improve performances of PV device for potential implementation in…" @default.
- W2154948425 created "2016-06-24" @default.
- W2154948425 creator A5060674670 @default.
- W2154948425 date "2019-10-02" @default.
- W2154948425 modified "2023-10-05" @default.
- W2154948425 title "Nanostructured silicon thin film solar cell" @default.
- W2154948425 cites W1570895503 @default.
- W2154948425 cites W1964622715 @default.
- W2154948425 cites W1966368446 @default.
- W2154948425 cites W1967494065 @default.
- W2154948425 cites W1968780806 @default.
- W2154948425 cites W1968909601 @default.
- W2154948425 cites W1969682386 @default.
- W2154948425 cites W1971765279 @default.
- W2154948425 cites W1977360832 @default.
- W2154948425 cites W1981053820 @default.
- W2154948425 cites W1982981211 @default.
- W2154948425 cites W1987211913 @default.
- W2154948425 cites W1988210987 @default.
- W2154948425 cites W1988217634 @default.
- W2154948425 cites W1992285329 @default.
- W2154948425 cites W1995289107 @default.
- W2154948425 cites W1997940788 @default.
- W2154948425 cites W2001639939 @default.
- W2154948425 cites W2001950778 @default.
- W2154948425 cites W2003274617 @default.
- W2154948425 cites W2003373056 @default.
- W2154948425 cites W2009380844 @default.
- W2154948425 cites W2013459719 @default.
- W2154948425 cites W2014708253 @default.
- W2154948425 cites W2015697061 @default.
- W2154948425 cites W2016420325 @default.
- W2154948425 cites W2016808665 @default.
- W2154948425 cites W2016873746 @default.
- W2154948425 cites W2017901301 @default.
- W2154948425 cites W2018930315 @default.
- W2154948425 cites W2019107265 @default.
- W2154948425 cites W2021386158 @default.
- W2154948425 cites W2023463652 @default.
- W2154948425 cites W2024802305 @default.
- W2154948425 cites W2028033110 @default.
- W2154948425 cites W2042331542 @default.
- W2154948425 cites W2043093494 @default.
- W2154948425 cites W2043200682 @default.
- W2154948425 cites W2043556244 @default.
- W2154948425 cites W2044538693 @default.
- W2154948425 cites W2047454058 @default.
- W2154948425 cites W2052160143 @default.
- W2154948425 cites W2056702438 @default.
- W2154948425 cites W2061506782 @default.
- W2154948425 cites W2066050686 @default.
- W2154948425 cites W2069090102 @default.
- W2154948425 cites W2081327291 @default.
- W2154948425 cites W2083862700 @default.
- W2154948425 cites W2089087930 @default.
- W2154948425 cites W2096402456 @default.
- W2154948425 cites W2104289634 @default.
- W2154948425 cites W2105818387 @default.
- W2154948425 cites W2108178058 @default.
- W2154948425 cites W2118644500 @default.
- W2154948425 cites W2122725944 @default.
- W2154948425 cites W2124043346 @default.
- W2154948425 cites W2125221388 @default.
- W2154948425 cites W2140042874 @default.
- W2154948425 cites W2143415283 @default.
- W2154948425 cites W2152400620 @default.
- W2154948425 cites W2153148535 @default.
- W2154948425 cites W2153384625 @default.
- W2154948425 cites W2158596327 @default.
- W2154948425 cites W2167222993 @default.
- W2154948425 cites W2171158267 @default.
- W2154948425 cites W2462125664 @default.
- W2154948425 cites W2778204279 @default.
- W2154948425 doi "https://doi.org/10.32657/10356/61617" @default.
- W2154948425 hasPublicationYear "2019" @default.
- W2154948425 type Work @default.
- W2154948425 sameAs 2154948425 @default.
- W2154948425 citedByCount "0" @default.
- W2154948425 crossrefType "dissertation" @default.
- W2154948425 hasAuthorship W2154948425A5060674670 @default.
- W2154948425 hasBestOaLocation W21549484251 @default.
- W2154948425 hasConcept C127413603 @default.
- W2154948425 hasConcept C171250308 @default.
- W2154948425 hasConcept C19067145 @default.
- W2154948425 hasConcept C192562407 @default.
- W2154948425 hasConcept C2780824857 @default.
- W2154948425 hasConcept C2983630935 @default.
- W2154948425 hasConcept C49040817 @default.
- W2154948425 hasConcept C544956773 @default.
- W2154948425 hasConcept C61696701 @default.
- W2154948425 hasConceptScore W2154948425C127413603 @default.
- W2154948425 hasConceptScore W2154948425C171250308 @default.
- W2154948425 hasConceptScore W2154948425C19067145 @default.
- W2154948425 hasConceptScore W2154948425C192562407 @default.
- W2154948425 hasConceptScore W2154948425C2780824857 @default.
- W2154948425 hasConceptScore W2154948425C2983630935 @default.
- W2154948425 hasConceptScore W2154948425C49040817 @default.
- W2154948425 hasConceptScore W2154948425C544956773 @default.
- W2154948425 hasConceptScore W2154948425C61696701 @default.
- W2154948425 hasLocation W21549484251 @default.