Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155013596> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2155013596 endingPage "978" @default.
- W2155013596 startingPage "929" @default.
- W2155013596 abstract "We prove that finite quotients of the multiplicative group of a finite dimensional division algebra are solvable. Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=application/x-tex>D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite dimensional division algebra having center <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N subset-of-or-equal-to upper D Superscript times> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>Nsubseteq D^{times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a normal subgroup of finite index. Suppose <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D Superscript times Baseline slash upper N> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>D^{times }/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is not solvable. Then we may assume that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H colon equals upper D Superscript times slash upper N> <mml:semantics> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>:=</mml:mo> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>H:=D^{times }/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <italic>minimal nonsolvable group</italic> (MNS group for short), i.e. a nonsolvable group all of whose proper quotients are solvable. Our proof now has two main ingredients. One ingredient is to show that the commuting graph of a finite MNS group satisfies a certain property which we denote <italic>Property <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis 3 and one half right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>3</mml:mn> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(3frac {1}{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula></italic>. This property includes the requirement that the diameter of the commuting graph should be <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=greater-than-or-equal-to 3> <mml:semantics> <mml:mrow> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>3</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>ge 3</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, but is, in fact, stronger. Another ingredient is to show that if the commuting graph of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D Superscript times Baseline slash upper N> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>D^{times }/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has Property <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis 3 and one half right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mn>3</mml:mn> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(3frac {1}{2})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is open with respect to a nontrivial height one valuation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D> <mml:semantics> <mml:mi>D</mml:mi> <mml:annotation encoding=application/x-tex>D</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (assuming without loss of generality, as we may, that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is finitely generated). After establishing the openness of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper N> <mml:semantics> <mml:mi>N</mml:mi> <mml:annotation encoding=application/x-tex>N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D Superscript times Baseline slash upper N> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mi>N</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>D^{times }/N</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is an MNS group) we apply the Nonexistence Theorem whose proof uses induction on the transcendence degree of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper K> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=application/x-tex>K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over its prime subfield to eliminate <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper H> <mml:semantics> <mml:mi>H</mml:mi> <mml:annotation encoding=application/x-tex>H</mml:annotation> </mml:semantics> </mml:math> </inline-formula> as a possible quotient of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper D Superscript times> <mml:semantics> <mml:msup> <mml:mi>D</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>×<!-- × --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>D^{times }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, thereby obtaining a contradiction and proving our main result." @default.
- W2155013596 created "2016-06-24" @default.
- W2155013596 creator A5008181183 @default.
- W2155013596 creator A5045087097 @default.
- W2155013596 creator A5074693968 @default.
- W2155013596 date "2002-06-21" @default.
- W2155013596 modified "2023-09-25" @default.
- W2155013596 title "Finite quotients of the multiplicative group of a finite dimensional division algebra are solvable" @default.
- W2155013596 cites W1515379151 @default.
- W2155013596 cites W1963707224 @default.
- W2155013596 cites W1972696266 @default.
- W2155013596 cites W1979066183 @default.
- W2155013596 cites W1979281846 @default.
- W2155013596 cites W1982899267 @default.
- W2155013596 cites W1991192224 @default.
- W2155013596 cites W1999060257 @default.
- W2155013596 cites W2000401436 @default.
- W2155013596 cites W2002798727 @default.
- W2155013596 cites W2087145162 @default.
- W2155013596 cites W2087385474 @default.
- W2155013596 cites W2113593747 @default.
- W2155013596 cites W2133914712 @default.
- W2155013596 cites W22814841 @default.
- W2155013596 cites W4229824918 @default.
- W2155013596 cites W4234106236 @default.
- W2155013596 cites W4237941720 @default.
- W2155013596 cites W4245615259 @default.
- W2155013596 cites W4251541061 @default.
- W2155013596 cites W4252146173 @default.
- W2155013596 cites W4255903160 @default.
- W2155013596 doi "https://doi.org/10.1090/s0894-0347-02-00393-4" @default.
- W2155013596 hasPublicationYear "2002" @default.
- W2155013596 type Work @default.
- W2155013596 sameAs 2155013596 @default.
- W2155013596 citedByCount "48" @default.
- W2155013596 countsByYear W21550135962012 @default.
- W2155013596 countsByYear W21550135962013 @default.
- W2155013596 countsByYear W21550135962014 @default.
- W2155013596 countsByYear W21550135962015 @default.
- W2155013596 countsByYear W21550135962016 @default.
- W2155013596 countsByYear W21550135962018 @default.
- W2155013596 countsByYear W21550135962019 @default.
- W2155013596 countsByYear W21550135962020 @default.
- W2155013596 countsByYear W21550135962021 @default.
- W2155013596 countsByYear W21550135962022 @default.
- W2155013596 crossrefType "journal-article" @default.
- W2155013596 hasAuthorship W2155013596A5008181183 @default.
- W2155013596 hasAuthorship W2155013596A5045087097 @default.
- W2155013596 hasAuthorship W2155013596A5074693968 @default.
- W2155013596 hasBestOaLocation W21550135961 @default.
- W2155013596 hasConcept C11413529 @default.
- W2155013596 hasConcept C134306372 @default.
- W2155013596 hasConcept C154945302 @default.
- W2155013596 hasConcept C2776321320 @default.
- W2155013596 hasConcept C33923547 @default.
- W2155013596 hasConcept C41008148 @default.
- W2155013596 hasConcept C42747912 @default.
- W2155013596 hasConceptScore W2155013596C11413529 @default.
- W2155013596 hasConceptScore W2155013596C134306372 @default.
- W2155013596 hasConceptScore W2155013596C154945302 @default.
- W2155013596 hasConceptScore W2155013596C2776321320 @default.
- W2155013596 hasConceptScore W2155013596C33923547 @default.
- W2155013596 hasConceptScore W2155013596C41008148 @default.
- W2155013596 hasConceptScore W2155013596C42747912 @default.
- W2155013596 hasIssue "4" @default.
- W2155013596 hasLocation W21550135961 @default.
- W2155013596 hasOpenAccess W2155013596 @default.
- W2155013596 hasPrimaryLocation W21550135961 @default.
- W2155013596 hasRelatedWork W151193258 @default.
- W2155013596 hasRelatedWork W1892467659 @default.
- W2155013596 hasRelatedWork W1993024450 @default.
- W2155013596 hasRelatedWork W1996796035 @default.
- W2155013596 hasRelatedWork W2018682603 @default.
- W2155013596 hasRelatedWork W2025793054 @default.
- W2155013596 hasRelatedWork W2045447888 @default.
- W2155013596 hasRelatedWork W2127459735 @default.
- W2155013596 hasRelatedWork W2543314671 @default.
- W2155013596 hasRelatedWork W2782710936 @default.
- W2155013596 hasVolume "15" @default.
- W2155013596 isParatext "false" @default.
- W2155013596 isRetracted "false" @default.
- W2155013596 magId "2155013596" @default.
- W2155013596 workType "article" @default.