Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155087493> ?p ?o ?g. }
- W2155087493 endingPage "98" @default.
- W2155087493 startingPage "98" @default.
- W2155087493 abstract "Technological progress in recent decades has enabled people to learn in different ways. Universities now have more educational models to choose from, i.e., b-learning and e-learning. Despite the increasing opportunities for students and instructors, online learning also brings challenges due to the absence of direct human contact. Online environments allow the generation of large amounts of data related to learning/teaching processes, which offers the possibility of extracting valuable information that may be employed to improve studentsâ performance. In this paper, we aim to review the similarities and differences between Educational Data Mining and Learning Analytics, two relatively new and increasingly popular fields of research concerned with the collection, analysis, and interpretation of educational data. Their origins, goals, differences, similarities, time evolution, and challenges are addressed, as are their relationship with Big Data and MOOCs." @default.
- W2155087493 created "2016-06-24" @default.
- W2155087493 creator A5055069535 @default.
- W2155087493 creator A5080136207 @default.
- W2155087493 date "2015-07-13" @default.
- W2155087493 modified "2023-10-17" @default.
- W2155087493 title "Educational Data Mining and Learning Analytics: differences, similarities, and time evolution" @default.
- W2155087493 cites W1175750 @default.
- W2155087493 cites W1458935713 @default.
- W2155087493 cites W1483702380 @default.
- W2155087493 cites W1494462387 @default.
- W2155087493 cites W1538208124 @default.
- W2155087493 cites W1539947443 @default.
- W2155087493 cites W1569653074 @default.
- W2155087493 cites W1597268399 @default.
- W2155087493 cites W1898103075 @default.
- W2155087493 cites W1966644670 @default.
- W2155087493 cites W2001461762 @default.
- W2155087493 cites W2006444123 @default.
- W2155087493 cites W2010299218 @default.
- W2155087493 cites W2027711578 @default.
- W2155087493 cites W2039552226 @default.
- W2155087493 cites W2078482049 @default.
- W2155087493 cites W2078649587 @default.
- W2155087493 cites W2105845727 @default.
- W2155087493 cites W2109389646 @default.
- W2155087493 cites W2123458117 @default.
- W2155087493 cites W2138334515 @default.
- W2155087493 cites W2145912399 @default.
- W2155087493 cites W2146286581 @default.
- W2155087493 cites W2152501956 @default.
- W2155087493 cites W2165050266 @default.
- W2155087493 cites W2170381648 @default.
- W2155087493 cites W2188960590 @default.
- W2155087493 cites W2268276693 @default.
- W2155087493 cites W2285959377 @default.
- W2155087493 cites W2491596651 @default.
- W2155087493 cites W2619369406 @default.
- W2155087493 cites W2791286707 @default.
- W2155087493 cites W2917562681 @default.
- W2155087493 cites W3113601901 @default.
- W2155087493 cites W3144343918 @default.
- W2155087493 cites W63263940 @default.
- W2155087493 cites W644825528 @default.
- W2155087493 cites W74347320 @default.
- W2155087493 cites W2285867460 @default.
- W2155087493 cites W64269816 @default.
- W2155087493 doi "https://doi.org/10.7238/rusc.v12i3.2515" @default.
- W2155087493 hasPublicationYear "2015" @default.
- W2155087493 type Work @default.
- W2155087493 sameAs 2155087493 @default.
- W2155087493 citedByCount "71" @default.
- W2155087493 countsByYear W21550874932016 @default.
- W2155087493 countsByYear W21550874932017 @default.
- W2155087493 countsByYear W21550874932018 @default.
- W2155087493 countsByYear W21550874932019 @default.
- W2155087493 countsByYear W21550874932020 @default.
- W2155087493 countsByYear W21550874932021 @default.
- W2155087493 countsByYear W21550874932022 @default.
- W2155087493 countsByYear W21550874932023 @default.
- W2155087493 crossrefType "journal-article" @default.
- W2155087493 hasAuthorship W2155087493A5055069535 @default.
- W2155087493 hasAuthorship W2155087493A5080136207 @default.
- W2155087493 hasBestOaLocation W21550874931 @default.
- W2155087493 hasConcept C124101348 @default.
- W2155087493 hasConcept C133462117 @default.
- W2155087493 hasConcept C136764020 @default.
- W2155087493 hasConcept C144024400 @default.
- W2155087493 hasConcept C145420912 @default.
- W2155087493 hasConcept C15744967 @default.
- W2155087493 hasConcept C16443162 @default.
- W2155087493 hasConcept C199360897 @default.
- W2155087493 hasConcept C2522767166 @default.
- W2155087493 hasConcept C2777598771 @default.
- W2155087493 hasConcept C2777648619 @default.
- W2155087493 hasConcept C2986087404 @default.
- W2155087493 hasConcept C36289849 @default.
- W2155087493 hasConcept C41008148 @default.
- W2155087493 hasConcept C527412718 @default.
- W2155087493 hasConcept C75684735 @default.
- W2155087493 hasConcept C79158427 @default.
- W2155087493 hasConceptScore W2155087493C124101348 @default.
- W2155087493 hasConceptScore W2155087493C133462117 @default.
- W2155087493 hasConceptScore W2155087493C136764020 @default.
- W2155087493 hasConceptScore W2155087493C144024400 @default.
- W2155087493 hasConceptScore W2155087493C145420912 @default.
- W2155087493 hasConceptScore W2155087493C15744967 @default.
- W2155087493 hasConceptScore W2155087493C16443162 @default.
- W2155087493 hasConceptScore W2155087493C199360897 @default.
- W2155087493 hasConceptScore W2155087493C2522767166 @default.
- W2155087493 hasConceptScore W2155087493C2777598771 @default.
- W2155087493 hasConceptScore W2155087493C2777648619 @default.
- W2155087493 hasConceptScore W2155087493C2986087404 @default.
- W2155087493 hasConceptScore W2155087493C36289849 @default.
- W2155087493 hasConceptScore W2155087493C41008148 @default.
- W2155087493 hasConceptScore W2155087493C527412718 @default.
- W2155087493 hasConceptScore W2155087493C75684735 @default.
- W2155087493 hasConceptScore W2155087493C79158427 @default.