Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155116952> ?p ?o ?g. }
- W2155116952 endingPage "R108" @default.
- W2155116952 startingPage "R108" @default.
- W2155116952 abstract "A key aim of triage is to identify those with high risk of cardiac arrest, as they require intensive monitoring, resuscitation facilities, and early intervention. We aim to validate a novel machine learning (ML) score incorporating heart rate variability (HRV) for triage of critically ill patients presenting to the emergency department by comparing the area under the curve, sensitivity and specificity with the modified early warning score (MEWS).We conducted a prospective observational study of critically ill patients (Patient Acuity Category Scale 1 and 2) in an emergency department of a tertiary hospital. At presentation, HRV parameters generated from a 5-minute electrocardiogram recording are incorporated with age and vital signs to generate the ML score for each patient. The patients are then followed up for outcomes of cardiac arrest or death.From June 2006 to June 2008 we enrolled 925 patients. The area under the receiver operating characteristic curve (AUROC) for ML scores in predicting cardiac arrest within 72 hours is 0.781, compared with 0.680 for MEWS (difference in AUROC: 0.101, 95% confidence interval: 0.006 to 0.197). As for in-hospital death, the area under the curve for ML score is 0.741, compared with 0.693 for MEWS (difference in AUROC: 0.048, 95% confidence interval: -0.023 to 0.119). A cutoff ML score ≥ 60 predicted cardiac arrest with a sensitivity of 84.1%, specificity of 72.3% and negative predictive value of 98.8%. A cutoff MEWS ≥ 3 predicted cardiac arrest with a sensitivity of 74.4%, specificity of 54.2% and negative predictive value of 97.8%.We found ML scores to be more accurate than the MEWS in predicting cardiac arrest within 72 hours. There is potential to develop bedside devices for risk stratification based on cardiac arrest prediction." @default.
- W2155116952 created "2016-06-24" @default.
- W2155116952 creator A5021550665 @default.
- W2155116952 creator A5025985734 @default.
- W2155116952 creator A5030967805 @default.
- W2155116952 creator A5041244916 @default.
- W2155116952 creator A5049506273 @default.
- W2155116952 creator A5059452714 @default.
- W2155116952 creator A5081249439 @default.
- W2155116952 creator A5087003724 @default.
- W2155116952 creator A5087685316 @default.
- W2155116952 date "2012-01-01" @default.
- W2155116952 modified "2023-10-16" @default.
- W2155116952 title "Prediction of cardiac arrest in critically ill patients presenting to the emergency department using a machine learning score incorporating heart rate variability compared with the modified early warning score" @default.
- W2155116952 cites W1964539134 @default.
- W2155116952 cites W1965021592 @default.
- W2155116952 cites W1966294459 @default.
- W2155116952 cites W1968918799 @default.
- W2155116952 cites W1970530324 @default.
- W2155116952 cites W1971226409 @default.
- W2155116952 cites W1978667936 @default.
- W2155116952 cites W1986827320 @default.
- W2155116952 cites W1990447784 @default.
- W2155116952 cites W1990580658 @default.
- W2155116952 cites W1994400370 @default.
- W2155116952 cites W1998638820 @default.
- W2155116952 cites W1999128621 @default.
- W2155116952 cites W2014512584 @default.
- W2155116952 cites W2027775877 @default.
- W2155116952 cites W2027865289 @default.
- W2155116952 cites W2029503776 @default.
- W2155116952 cites W2030127093 @default.
- W2155116952 cites W2034758365 @default.
- W2155116952 cites W2035519154 @default.
- W2155116952 cites W2038569109 @default.
- W2155116952 cites W2044054674 @default.
- W2155116952 cites W2046570889 @default.
- W2155116952 cites W2048509252 @default.
- W2155116952 cites W2050057188 @default.
- W2155116952 cites W2054698665 @default.
- W2155116952 cites W2056729001 @default.
- W2155116952 cites W2057009832 @default.
- W2155116952 cites W2058047201 @default.
- W2155116952 cites W2060083322 @default.
- W2155116952 cites W2070196597 @default.
- W2155116952 cites W2075382514 @default.
- W2155116952 cites W2076386730 @default.
- W2155116952 cites W2080887489 @default.
- W2155116952 cites W2082257894 @default.
- W2155116952 cites W2084175310 @default.
- W2155116952 cites W2086434798 @default.
- W2155116952 cites W2094607896 @default.
- W2155116952 cites W2095745637 @default.
- W2155116952 cites W2099619765 @default.
- W2155116952 cites W2102654198 @default.
- W2155116952 cites W2106990917 @default.
- W2155116952 cites W2108270639 @default.
- W2155116952 cites W2114122795 @default.
- W2155116952 cites W2114775432 @default.
- W2155116952 cites W2122233316 @default.
- W2155116952 cites W2122662039 @default.
- W2155116952 cites W2133589238 @default.
- W2155116952 cites W2139212933 @default.
- W2155116952 cites W2139676856 @default.
- W2155116952 cites W2150447398 @default.
- W2155116952 cites W2163005662 @default.
- W2155116952 cites W2169167455 @default.
- W2155116952 cites W2325256176 @default.
- W2155116952 doi "https://doi.org/10.1186/cc11396" @default.
- W2155116952 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3580666" @default.
- W2155116952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22715923" @default.
- W2155116952 hasPublicationYear "2012" @default.
- W2155116952 type Work @default.
- W2155116952 sameAs 2155116952 @default.
- W2155116952 citedByCount "97" @default.
- W2155116952 countsByYear W21551169522014 @default.
- W2155116952 countsByYear W21551169522015 @default.
- W2155116952 countsByYear W21551169522016 @default.
- W2155116952 countsByYear W21551169522017 @default.
- W2155116952 countsByYear W21551169522018 @default.
- W2155116952 countsByYear W21551169522019 @default.
- W2155116952 countsByYear W21551169522020 @default.
- W2155116952 countsByYear W21551169522021 @default.
- W2155116952 countsByYear W21551169522022 @default.
- W2155116952 countsByYear W21551169522023 @default.
- W2155116952 crossrefType "journal-article" @default.
- W2155116952 hasAuthorship W2155116952A5021550665 @default.
- W2155116952 hasAuthorship W2155116952A5025985734 @default.
- W2155116952 hasAuthorship W2155116952A5030967805 @default.
- W2155116952 hasAuthorship W2155116952A5041244916 @default.
- W2155116952 hasAuthorship W2155116952A5049506273 @default.
- W2155116952 hasAuthorship W2155116952A5059452714 @default.
- W2155116952 hasAuthorship W2155116952A5081249439 @default.
- W2155116952 hasAuthorship W2155116952A5087003724 @default.
- W2155116952 hasAuthorship W2155116952A5087685316 @default.
- W2155116952 hasBestOaLocation W21551169521 @default.
- W2155116952 hasConcept C118552586 @default.
- W2155116952 hasConcept C126322002 @default.