Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155117729> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2155117729 endingPage "3" @default.
- W2155117729 startingPage "1" @default.
- W2155117729 abstract "Feature extraction is the process of deriving new weakly correlated features from the original features in order to reduce the cost of feature measurement, increase classifier efficiency, and allows higher classification accuracy. The selection and quality of the features representing each pattern have considerable bearing on the success of subsequent pattern classification. In this paper, we supply a comparative study for best feature extraction method for speaker recognition system. A Linear Discriminant Analysis (LDA) method is compared to two well-known feature extraction techniques, namely Principal Component Analysis (PCA) and Sequential Forward Search (SFS). Evaluation is carried out on Arabic speech database using four acoustic representations combined with prosodic features. We show that LDA-based feature outperformed PCA and SFS in acoustic alone as well as for acoustic and prosodic combined features. General Terms Pattern Recognition, Speaker Recognition" @default.
- W2155117729 created "2016-06-24" @default.
- W2155117729 creator A5051375760 @default.
- W2155117729 creator A5057026818 @default.
- W2155117729 date "2011-02-28" @default.
- W2155117729 modified "2023-10-18" @default.
- W2155117729 title "PCA, SFS or LDA: What is the best choice for extracting speaker features" @default.
- W2155117729 cites W136268286 @default.
- W2155117729 cites W1556565948 @default.
- W2155117729 cites W1560013842 @default.
- W2155117729 cites W2072026441 @default.
- W2155117729 cites W2101662502 @default.
- W2155117729 cites W2103075368 @default.
- W2155117729 cites W2290028669 @default.
- W2155117729 cites W2395619215 @default.
- W2155117729 cites W2799061466 @default.
- W2155117729 cites W3099514962 @default.
- W2155117729 cites W2183832936 @default.
- W2155117729 doi "https://doi.org/10.5120/1932-2578" @default.
- W2155117729 hasPublicationYear "2011" @default.
- W2155117729 type Work @default.
- W2155117729 sameAs 2155117729 @default.
- W2155117729 citedByCount "0" @default.
- W2155117729 crossrefType "journal-article" @default.
- W2155117729 hasAuthorship W2155117729A5051375760 @default.
- W2155117729 hasAuthorship W2155117729A5057026818 @default.
- W2155117729 hasBestOaLocation W21551177291 @default.
- W2155117729 hasConcept C153180895 @default.
- W2155117729 hasConcept C154945302 @default.
- W2155117729 hasConcept C204321447 @default.
- W2155117729 hasConcept C28490314 @default.
- W2155117729 hasConcept C41008148 @default.
- W2155117729 hasConceptScore W2155117729C153180895 @default.
- W2155117729 hasConceptScore W2155117729C154945302 @default.
- W2155117729 hasConceptScore W2155117729C204321447 @default.
- W2155117729 hasConceptScore W2155117729C28490314 @default.
- W2155117729 hasConceptScore W2155117729C41008148 @default.
- W2155117729 hasIssue "3" @default.
- W2155117729 hasLocation W21551177291 @default.
- W2155117729 hasOpenAccess W2155117729 @default.
- W2155117729 hasPrimaryLocation W21551177291 @default.
- W2155117729 hasRelatedWork W1552159754 @default.
- W2155117729 hasRelatedWork W2131420137 @default.
- W2155117729 hasRelatedWork W2148757832 @default.
- W2155117729 hasRelatedWork W2293457016 @default.
- W2155117729 hasRelatedWork W2368651715 @default.
- W2155117729 hasRelatedWork W2611614995 @default.
- W2155117729 hasRelatedWork W2789919619 @default.
- W2155117729 hasRelatedWork W3107474891 @default.
- W2155117729 hasRelatedWork W3169305685 @default.
- W2155117729 hasRelatedWork W4321496520 @default.
- W2155117729 hasVolume "15" @default.
- W2155117729 isParatext "false" @default.
- W2155117729 isRetracted "false" @default.
- W2155117729 magId "2155117729" @default.
- W2155117729 workType "article" @default.