Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155123790> ?p ?o ?g. }
- W2155123790 endingPage "43" @default.
- W2155123790 startingPage "30" @default.
- W2155123790 abstract "Interbasin flow in the Great Basin has been established by scientific studies during the past century. While not occurring uniformly between all basins, its occurrence is common and is a function of the hydraulic gradient between basins and hydraulic conductivity of the intervening rocks. The Furnace Creek springs in Death Valley, California are an example of large volume springs that are widely accepted as being the discharge points of regional interbasin flow. The flow path has been interpreted historically to be through consolidated Paleozoic carbonate rocks in the southern Funeral Mountains. This work reviews the preponderance of evidence supporting the concept of interbasin flow in the Death Valley region and the Great Basin and addresses the conceptual model of pluvial and recent recharge [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349; Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276–302] as the source of the Furnace Creek springs. We find that there is insufficient modern recharge and insufficient storage potential and permeability within the basin-fill units in the Furnace Creek basin for these to serve as a local aquifer. Further, the lack of high sulfate content in the spring waters argues against significant flow through basin-fill sediments and instead suggests flow through underlying consolidated carbonate rocks. The maximum temperature of the spring discharge appears to require deep circulation through consolidated rocks; the Tertiary basin fill is of insufficient thickness to generate such temperatures as a result of local fluid circulation. Finally, the stable isotope data and chemical mass balance modeling actually support the interbasin flow conceptual model rather than the alternative presented in Nelson et al. [Nelson, S.T., Anderson, K., Mayo, A.L., 2004. Testing the interbasin flow hypothesis at Death Valley, California. EOS 85, 349] and Anderson et al. [Anderson, K., Nelson, S., Mayo, A., Tingey, D., 2006. Interbasin flow revisited: the contribution of local recharge to high-discharge springs, Death Valley, California. Journal of Hydrology 323, 276–302]. In light of these inconsistencies, interbasin flow is the only readily apparent explanation for the large spring discharges at Furnace Creek and, in our view, is the likely explanation for most large volume, low elevation springs in the Great Basin. An understanding of hydrogeologic processes that control the rate and direction of ground-water flow in eastern and central Nevada is necessary component of regional water-resource planning and management of alluvial and bedrock aquifers." @default.
- W2155123790 created "2016-06-24" @default.
- W2155123790 creator A5008950927 @default.
- W2155123790 creator A5028835017 @default.
- W2155123790 creator A5035474532 @default.
- W2155123790 creator A5049133746 @default.
- W2155123790 date "2009-05-01" @default.
- W2155123790 modified "2023-10-16" @default.
- W2155123790 title "Interbasin flow in the Great Basin with special reference to the southern Funeral Mountains and the source of Furnace Creek springs, Death Valley, California, U.S." @default.
- W2155123790 cites W1486327226 @default.
- W2155123790 cites W1493416529 @default.
- W2155123790 cites W1524239548 @default.
- W2155123790 cites W1536315786 @default.
- W2155123790 cites W1547781132 @default.
- W2155123790 cites W1550851723 @default.
- W2155123790 cites W1551006625 @default.
- W2155123790 cites W1567172124 @default.
- W2155123790 cites W1593546438 @default.
- W2155123790 cites W1596227647 @default.
- W2155123790 cites W1599560970 @default.
- W2155123790 cites W1602616655 @default.
- W2155123790 cites W1966282214 @default.
- W2155123790 cites W1979991687 @default.
- W2155123790 cites W1986772138 @default.
- W2155123790 cites W2016643774 @default.
- W2155123790 cites W2026781306 @default.
- W2155123790 cites W2029348143 @default.
- W2155123790 cites W2032436360 @default.
- W2155123790 cites W2036956451 @default.
- W2155123790 cites W2044140503 @default.
- W2155123790 cites W2051173832 @default.
- W2155123790 cites W2060449353 @default.
- W2155123790 cites W2062631351 @default.
- W2155123790 cites W2066209327 @default.
- W2155123790 cites W2068273390 @default.
- W2155123790 cites W2069416675 @default.
- W2155123790 cites W2095085430 @default.
- W2155123790 cites W2096389073 @default.
- W2155123790 cites W2105299011 @default.
- W2155123790 cites W2136655119 @default.
- W2155123790 cites W2161480748 @default.
- W2155123790 cites W2489462453 @default.
- W2155123790 cites W48032426 @default.
- W2155123790 cites W93118645 @default.
- W2155123790 doi "https://doi.org/10.1016/j.jhydrol.2009.02.048" @default.
- W2155123790 hasPublicationYear "2009" @default.
- W2155123790 type Work @default.
- W2155123790 sameAs 2155123790 @default.
- W2155123790 citedByCount "23" @default.
- W2155123790 countsByYear W21551237902012 @default.
- W2155123790 countsByYear W21551237902013 @default.
- W2155123790 countsByYear W21551237902014 @default.
- W2155123790 countsByYear W21551237902015 @default.
- W2155123790 countsByYear W21551237902016 @default.
- W2155123790 countsByYear W21551237902018 @default.
- W2155123790 countsByYear W21551237902019 @default.
- W2155123790 countsByYear W21551237902020 @default.
- W2155123790 countsByYear W21551237902021 @default.
- W2155123790 countsByYear W21551237902022 @default.
- W2155123790 crossrefType "journal-article" @default.
- W2155123790 hasAuthorship W2155123790A5008950927 @default.
- W2155123790 hasAuthorship W2155123790A5028835017 @default.
- W2155123790 hasAuthorship W2155123790A5035474532 @default.
- W2155123790 hasAuthorship W2155123790A5049133746 @default.
- W2155123790 hasBestOaLocation W21551237902 @default.
- W2155123790 hasConcept C109007969 @default.
- W2155123790 hasConcept C111368507 @default.
- W2155123790 hasConcept C114793014 @default.
- W2155123790 hasConcept C127313418 @default.
- W2155123790 hasConcept C127413603 @default.
- W2155123790 hasConcept C174091901 @default.
- W2155123790 hasConcept C187320778 @default.
- W2155123790 hasConcept C2778712887 @default.
- W2155123790 hasConcept C2780380513 @default.
- W2155123790 hasConcept C55865629 @default.
- W2155123790 hasConcept C75622301 @default.
- W2155123790 hasConcept C76177295 @default.
- W2155123790 hasConcept C76886044 @default.
- W2155123790 hasConcept C78519656 @default.
- W2155123790 hasConceptScore W2155123790C109007969 @default.
- W2155123790 hasConceptScore W2155123790C111368507 @default.
- W2155123790 hasConceptScore W2155123790C114793014 @default.
- W2155123790 hasConceptScore W2155123790C127313418 @default.
- W2155123790 hasConceptScore W2155123790C127413603 @default.
- W2155123790 hasConceptScore W2155123790C174091901 @default.
- W2155123790 hasConceptScore W2155123790C187320778 @default.
- W2155123790 hasConceptScore W2155123790C2778712887 @default.
- W2155123790 hasConceptScore W2155123790C2780380513 @default.
- W2155123790 hasConceptScore W2155123790C55865629 @default.
- W2155123790 hasConceptScore W2155123790C75622301 @default.
- W2155123790 hasConceptScore W2155123790C76177295 @default.
- W2155123790 hasConceptScore W2155123790C76886044 @default.
- W2155123790 hasConceptScore W2155123790C78519656 @default.
- W2155123790 hasIssue "1-2" @default.
- W2155123790 hasLocation W21551237901 @default.
- W2155123790 hasLocation W21551237902 @default.
- W2155123790 hasLocation W21551237903 @default.
- W2155123790 hasOpenAccess W2155123790 @default.