Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155162422> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2155162422 endingPage "8595" @default.
- W2155162422 startingPage "8553" @default.
- W2155162422 abstract "We study abelian varieties defined over function fields of curves in positive characteristic <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, focusing on their arithmetic in the system of Artin-Schreier extensions. First, we prove that the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=application/x-tex>L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function of such an abelian variety vanishes to high order at the center point of its functional equation under a parity condition on the conductor. Second, we develop an Artin-Schreier variant of a construction of Berger. This yields a new class of Jacobians over function fields for which the Birch and Swinnerton-Dyer conjecture holds. Third, we give a formula for the rank of the Mordell-Weil groups of these Jacobians in terms of the geometry of their fibers of bad reduction and homomorphisms between Jacobians of auxiliary Artin-Schreier curves. We illustrate these theorems by computing the rank for explicit examples of Jacobians of arbitrary dimension <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=g> <mml:semantics> <mml:mi>g</mml:mi> <mml:annotation encoding=application/x-tex>g</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, exhibiting Jacobians with bounded rank and others with unbounded rank in the tower of Artin-Schreier extensions. Finally, we compute the Mordell-Weil lattices of an isotrivial elliptic curve and a family of non-isotrivial elliptic curves. The latter exhibits an exotic phenomenon whereby the angles between lattice vectors are related to point counts on elliptic curves over finite fields. Our methods also yield new results about supersingular factors of Jacobians of Artin-Schreier curves." @default.
- W2155162422 created "2016-06-24" @default.
- W2155162422 creator A5010176920 @default.
- W2155162422 creator A5020325620 @default.
- W2155162422 date "2016-01-27" @default.
- W2155162422 modified "2023-10-07" @default.
- W2155162422 title "Arithmetic of abelian varieties in Artin-Schreier extensions" @default.
- W2155162422 cites W1527260678 @default.
- W2155162422 cites W1557415002 @default.
- W2155162422 cites W1701405373 @default.
- W2155162422 cites W1814813023 @default.
- W2155162422 cites W1965698146 @default.
- W2155162422 cites W1969909759 @default.
- W2155162422 cites W1980775424 @default.
- W2155162422 cites W2002034138 @default.
- W2155162422 cites W2021936857 @default.
- W2155162422 cites W2031802028 @default.
- W2155162422 cites W2060261598 @default.
- W2155162422 cites W2076178640 @default.
- W2155162422 cites W2105290889 @default.
- W2155162422 cites W2235978565 @default.
- W2155162422 cites W2607863928 @default.
- W2155162422 cites W2963095565 @default.
- W2155162422 cites W3022085934 @default.
- W2155162422 cites W3101499277 @default.
- W2155162422 cites W4246109111 @default.
- W2155162422 cites W4247556508 @default.
- W2155162422 cites W4292408570 @default.
- W2155162422 doi "https://doi.org/10.1090/tran6641" @default.
- W2155162422 hasPublicationYear "2016" @default.
- W2155162422 type Work @default.
- W2155162422 sameAs 2155162422 @default.
- W2155162422 citedByCount "7" @default.
- W2155162422 countsByYear W21551624222014 @default.
- W2155162422 countsByYear W21551624222018 @default.
- W2155162422 countsByYear W21551624222019 @default.
- W2155162422 countsByYear W21551624222020 @default.
- W2155162422 countsByYear W21551624222022 @default.
- W2155162422 crossrefType "journal-article" @default.
- W2155162422 hasAuthorship W2155162422A5010176920 @default.
- W2155162422 hasAuthorship W2155162422A5020325620 @default.
- W2155162422 hasBestOaLocation W21551624221 @default.
- W2155162422 hasConcept C11413529 @default.
- W2155162422 hasConcept C136119220 @default.
- W2155162422 hasConcept C136170076 @default.
- W2155162422 hasConcept C154945302 @default.
- W2155162422 hasConcept C202444582 @default.
- W2155162422 hasConcept C2776321320 @default.
- W2155162422 hasConcept C33923547 @default.
- W2155162422 hasConcept C41008148 @default.
- W2155162422 hasConceptScore W2155162422C11413529 @default.
- W2155162422 hasConceptScore W2155162422C136119220 @default.
- W2155162422 hasConceptScore W2155162422C136170076 @default.
- W2155162422 hasConceptScore W2155162422C154945302 @default.
- W2155162422 hasConceptScore W2155162422C202444582 @default.
- W2155162422 hasConceptScore W2155162422C2776321320 @default.
- W2155162422 hasConceptScore W2155162422C33923547 @default.
- W2155162422 hasConceptScore W2155162422C41008148 @default.
- W2155162422 hasFunder F4320306076 @default.
- W2155162422 hasIssue "12" @default.
- W2155162422 hasLocation W21551624221 @default.
- W2155162422 hasLocation W21551624222 @default.
- W2155162422 hasLocation W21551624223 @default.
- W2155162422 hasOpenAccess W2155162422 @default.
- W2155162422 hasPrimaryLocation W21551624221 @default.
- W2155162422 hasRelatedWork W1979597421 @default.
- W2155162422 hasRelatedWork W2007980826 @default.
- W2155162422 hasRelatedWork W2218034408 @default.
- W2155162422 hasRelatedWork W2263699433 @default.
- W2155162422 hasRelatedWork W2358755282 @default.
- W2155162422 hasRelatedWork W2361861616 @default.
- W2155162422 hasRelatedWork W2377979023 @default.
- W2155162422 hasRelatedWork W2392921965 @default.
- W2155162422 hasRelatedWork W2625833328 @default.
- W2155162422 hasRelatedWork W4245490552 @default.
- W2155162422 hasVolume "368" @default.
- W2155162422 isParatext "false" @default.
- W2155162422 isRetracted "false" @default.
- W2155162422 magId "2155162422" @default.
- W2155162422 workType "article" @default.