Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155230170> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2155230170 abstract "The Markov Chain Monte Carlo (MCMC) is a method that is used to estimate parameters of interest under difficult conditions such as missing data or when underlying distributions do not fit the assumptions of Maximum Likelihood processes. The objective of this process is to find a probability distribution known as a posterior distribution in Bayesian analysis that can be used to estimate target parameters. In this paper, we consider a case where data are contaminated with missing values and therefore need to be adequately handled using missing data techniques before making inferences on them. A review of the mathematics involved in MCMC procedures in the presence of missing data is presented. Furthermore, we use real data to compare inferences made using multiple imputation based on the multivariate normal model (MVN) that uses the MCMC procedure, the case deletion (CD) missing data method that discards subjects with missing values from the analysis, and the fully conditional specification (FCS) multiple imputation method that uses a sequence of regression models to fill in missing values. Assuming that data are missing completely at random (MCAR) on continuous and normally distributed variables, the following findings are obtained: (1) The higher the proportion of missing data on a variable of interest, the more the relationship between that variable and the dependent variable is distorted when all missing data methods are applied. (2) Multiple imputation based methods produce similar estimates which are better than estimates from the case deletion method. (3) At some stage (when the proportion of missing data becomes high), none of the missing data techniques can help to maintain an initially existing relationship between the dependent variable and some of the covariates of interest in the dataset." @default.
- W2155230170 created "2016-06-24" @default.
- W2155230170 creator A5015546814 @default.
- W2155230170 creator A5038961156 @default.
- W2155230170 date "2013-01-01" @default.
- W2155230170 modified "2023-09-24" @default.
- W2155230170 title "Using the Markov Chain Monte Carlo Method to Make Inferences on Items of Data Contaminated by Missing Values," @default.
- W2155230170 cites W1549714446 @default.
- W2155230170 cites W1550443206 @default.
- W2155230170 cites W1610612296 @default.
- W2155230170 cites W1975405479 @default.
- W2155230170 cites W1989203151 @default.
- W2155230170 cites W2004651358 @default.
- W2155230170 cites W2033886860 @default.
- W2155230170 cites W2044758663 @default.
- W2155230170 cites W2045656233 @default.
- W2155230170 cites W2076395872 @default.
- W2155230170 cites W2096391232 @default.
- W2155230170 cites W2113559481 @default.
- W2155230170 cites W2114004166 @default.
- W2155230170 cites W2116814040 @default.
- W2155230170 cites W2143721482 @default.
- W2155230170 cites W2148659017 @default.
- W2155230170 cites W2156267802 @default.
- W2155230170 cites W321726205 @default.
- W2155230170 doi "https://doi.org/10.11648/j.ajtas.20130203.12" @default.
- W2155230170 hasPublicationYear "2013" @default.
- W2155230170 type Work @default.
- W2155230170 sameAs 2155230170 @default.
- W2155230170 citedByCount "8" @default.
- W2155230170 countsByYear W21552301702016 @default.
- W2155230170 countsByYear W21552301702018 @default.
- W2155230170 countsByYear W21552301702021 @default.
- W2155230170 countsByYear W21552301702022 @default.
- W2155230170 crossrefType "journal-article" @default.
- W2155230170 hasAuthorship W2155230170A5015546814 @default.
- W2155230170 hasAuthorship W2155230170A5038961156 @default.
- W2155230170 hasBestOaLocation W21552301701 @default.
- W2155230170 hasConcept C105795698 @default.
- W2155230170 hasConcept C107673813 @default.
- W2155230170 hasConcept C111350023 @default.
- W2155230170 hasConcept C161584116 @default.
- W2155230170 hasConcept C177384507 @default.
- W2155230170 hasConcept C33923547 @default.
- W2155230170 hasConcept C41008148 @default.
- W2155230170 hasConcept C58041806 @default.
- W2155230170 hasConcept C9357733 @default.
- W2155230170 hasConceptScore W2155230170C105795698 @default.
- W2155230170 hasConceptScore W2155230170C107673813 @default.
- W2155230170 hasConceptScore W2155230170C111350023 @default.
- W2155230170 hasConceptScore W2155230170C161584116 @default.
- W2155230170 hasConceptScore W2155230170C177384507 @default.
- W2155230170 hasConceptScore W2155230170C33923547 @default.
- W2155230170 hasConceptScore W2155230170C41008148 @default.
- W2155230170 hasConceptScore W2155230170C58041806 @default.
- W2155230170 hasConceptScore W2155230170C9357733 @default.
- W2155230170 hasLocation W21552301701 @default.
- W2155230170 hasOpenAccess W2155230170 @default.
- W2155230170 hasPrimaryLocation W21552301701 @default.
- W2155230170 hasRelatedWork W1484907578 @default.
- W2155230170 hasRelatedWork W1531289110 @default.
- W2155230170 hasRelatedWork W1786747023 @default.
- W2155230170 hasRelatedWork W1911131141 @default.
- W2155230170 hasRelatedWork W1964943732 @default.
- W2155230170 hasRelatedWork W1984683132 @default.
- W2155230170 hasRelatedWork W2011764809 @default.
- W2155230170 hasRelatedWork W202175881 @default.
- W2155230170 hasRelatedWork W2078965693 @default.
- W2155230170 hasRelatedWork W2084864582 @default.
- W2155230170 hasRelatedWork W2127899641 @default.
- W2155230170 hasRelatedWork W2171124746 @default.
- W2155230170 hasRelatedWork W2186803720 @default.
- W2155230170 hasRelatedWork W2188235182 @default.
- W2155230170 hasRelatedWork W2241036953 @default.
- W2155230170 hasRelatedWork W2329790125 @default.
- W2155230170 hasRelatedWork W2626095066 @default.
- W2155230170 hasRelatedWork W2913842941 @default.
- W2155230170 hasRelatedWork W3197494818 @default.
- W2155230170 hasRelatedWork W3209607133 @default.
- W2155230170 isParatext "false" @default.
- W2155230170 isRetracted "false" @default.
- W2155230170 magId "2155230170" @default.
- W2155230170 workType "article" @default.