Matches in SemOpenAlex for { <https://semopenalex.org/work/W215523972> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W215523972 endingPage "5" @default.
- W215523972 startingPage "1" @default.
- W215523972 abstract "Speech Recognition for Urdu language is an interesting and less developed task. This is primarily due to the fact that linguistic resources such as rich corpus are not available for Urdu. Yet, few attempts have been made for developing Urdu speech recognition frameworks using the traditional approaches such as Hidden Markov Models and Neural Networks. In this work, we investigate the use of three classification methods for Urdu speech recognition task. We extract the Mel Frequency Cepstral Coefficients, the delta and delta-delta features from the speech data and train the classifiers to perform Urdu speech recognition. We present the performance achieved by training a Support Vector Machine (SVM) classifier, a random forest (RF) classifier and a linear discriminant analysis classifier (LDA) for comparison with SVM. Consequently, the experimental results show that SVM gives better performance than RF and LDA classifiers on this particular task." @default.
- W215523972 created "2016-06-24" @default.
- W215523972 creator A5051893714 @default.
- W215523972 creator A5074270823 @default.
- W215523972 creator A5079044716 @default.
- W215523972 date "2015-05-20" @default.
- W215523972 modified "2023-10-14" @default.
- W215523972 title "Automatic Speech Recognition of Urdu Digits with Optimal Classification Approach" @default.
- W215523972 cites W112533785 @default.
- W215523972 cites W1464013773 @default.
- W215523972 cites W1486540228 @default.
- W215523972 cites W1533860143 @default.
- W215523972 cites W1538323930 @default.
- W215523972 cites W154036070 @default.
- W215523972 cites W1548139318 @default.
- W215523972 cites W1689977300 @default.
- W215523972 cites W1930624869 @default.
- W215523972 cites W1969443802 @default.
- W215523972 cites W1993482042 @default.
- W215523972 cites W2021320861 @default.
- W215523972 cites W2046551672 @default.
- W215523972 cites W2058578181 @default.
- W215523972 cites W2086879534 @default.
- W215523972 cites W2087347434 @default.
- W215523972 cites W2099189034 @default.
- W215523972 cites W2102909657 @default.
- W215523972 cites W2106929567 @default.
- W215523972 cites W2117018510 @default.
- W215523972 cites W2119821739 @default.
- W215523972 cites W2125838338 @default.
- W215523972 cites W2128160875 @default.
- W215523972 cites W2128302979 @default.
- W215523972 cites W2139212933 @default.
- W215523972 cites W2146128668 @default.
- W215523972 cites W2153635508 @default.
- W215523972 cites W2168228682 @default.
- W215523972 cites W232876404 @default.
- W215523972 cites W3143136364 @default.
- W215523972 cites W2369082565 @default.
- W215523972 doi "https://doi.org/10.5120/20770-3275" @default.
- W215523972 hasPublicationYear "2015" @default.
- W215523972 type Work @default.
- W215523972 sameAs 215523972 @default.
- W215523972 citedByCount "10" @default.
- W215523972 countsByYear W2155239722016 @default.
- W215523972 countsByYear W2155239722017 @default.
- W215523972 countsByYear W2155239722018 @default.
- W215523972 countsByYear W2155239722019 @default.
- W215523972 countsByYear W2155239722021 @default.
- W215523972 countsByYear W2155239722022 @default.
- W215523972 countsByYear W2155239722023 @default.
- W215523972 crossrefType "journal-article" @default.
- W215523972 hasAuthorship W215523972A5051893714 @default.
- W215523972 hasAuthorship W215523972A5074270823 @default.
- W215523972 hasAuthorship W215523972A5079044716 @default.
- W215523972 hasBestOaLocation W2155239721 @default.
- W215523972 hasConcept C138885662 @default.
- W215523972 hasConcept C153180895 @default.
- W215523972 hasConcept C154945302 @default.
- W215523972 hasConcept C204321447 @default.
- W215523972 hasConcept C2777350258 @default.
- W215523972 hasConcept C28490314 @default.
- W215523972 hasConcept C41008148 @default.
- W215523972 hasConcept C41895202 @default.
- W215523972 hasConceptScore W215523972C138885662 @default.
- W215523972 hasConceptScore W215523972C153180895 @default.
- W215523972 hasConceptScore W215523972C154945302 @default.
- W215523972 hasConceptScore W215523972C204321447 @default.
- W215523972 hasConceptScore W215523972C2777350258 @default.
- W215523972 hasConceptScore W215523972C28490314 @default.
- W215523972 hasConceptScore W215523972C41008148 @default.
- W215523972 hasConceptScore W215523972C41895202 @default.
- W215523972 hasIssue "9" @default.
- W215523972 hasLocation W2155239721 @default.
- W215523972 hasOpenAccess W215523972 @default.
- W215523972 hasPrimaryLocation W2155239721 @default.
- W215523972 hasRelatedWork W2173430034 @default.
- W215523972 hasRelatedWork W2250347524 @default.
- W215523972 hasRelatedWork W2345601730 @default.
- W215523972 hasRelatedWork W2368651715 @default.
- W215523972 hasRelatedWork W2546719740 @default.
- W215523972 hasRelatedWork W2611370797 @default.
- W215523972 hasRelatedWork W2611614995 @default.
- W215523972 hasRelatedWork W2789919619 @default.
- W215523972 hasRelatedWork W3107474891 @default.
- W215523972 hasRelatedWork W749708600 @default.
- W215523972 hasVolume "118" @default.
- W215523972 isParatext "false" @default.
- W215523972 isRetracted "false" @default.
- W215523972 magId "215523972" @default.
- W215523972 workType "article" @default.