Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155345760> ?p ?o ?g. }
- W2155345760 abstract "Abstract Background Machine learning is a powerful approach for describing and predicting classes in microarray data. Although several comparative studies have investigated the relative performance of various machine learning methods, these often do not account for the fact that performance (e.g. error rate) is a result of a series of analysis steps of which the most important are data normalization, gene selection and machine learning. Results In this study, we used seven previously published cancer-related microarray data sets to compare the effects on classification performance of five normalization methods, three gene selection methods with 21 different numbers of selected genes and eight machine learning methods. Performance in term of error rate was rigorously estimated by repeatedly employing a double cross validation approach. Since performance varies greatly between data sets, we devised an analysis method that first compares methods within individual data sets and then visualizes the comparisons across data sets. We discovered both well performing individual methods and synergies between different methods. Conclusion Support Vector Machines with a radial basis kernel, linear kernel or polynomial kernel of degree 2 all performed consistently well across data sets. We show that there is a synergistic relationship between these methods and gene selection based on the T-test and the selection of a relatively high number of genes. Also, we find that these methods benefit significantly from using normalized data, although it is hard to draw general conclusions about the relative performance of different normalization procedures." @default.
- W2155345760 created "2016-06-24" @default.
- W2155345760 creator A5022568938 @default.
- W2155345760 creator A5031212174 @default.
- W2155345760 creator A5034145914 @default.
- W2155345760 creator A5036544220 @default.
- W2155345760 creator A5044328416 @default.
- W2155345760 date "2011-10-07" @default.
- W2155345760 modified "2023-10-16" @default.
- W2155345760 title "Classification of microarrays; synergistic effects between normalization, gene selection and machine learning" @default.
- W2155345760 cites W1480376833 @default.
- W2155345760 cites W1700031991 @default.
- W2155345760 cites W1768257245 @default.
- W2155345760 cites W1987485110 @default.
- W2155345760 cites W2007176121 @default.
- W2155345760 cites W2007601283 @default.
- W2155345760 cites W2014245116 @default.
- W2155345760 cites W2029394273 @default.
- W2155345760 cites W2057328179 @default.
- W2155345760 cites W2082233060 @default.
- W2155345760 cites W2096763239 @default.
- W2155345760 cites W2096863518 @default.
- W2155345760 cites W2097936772 @default.
- W2155345760 cites W2098740506 @default.
- W2155345760 cites W2100668965 @default.
- W2155345760 cites W2107956883 @default.
- W2155345760 cites W2115358726 @default.
- W2155345760 cites W2116079122 @default.
- W2155345760 cites W2119387367 @default.
- W2155345760 cites W2120004030 @default.
- W2155345760 cites W2120190778 @default.
- W2155345760 cites W2121536973 @default.
- W2155345760 cites W2122210511 @default.
- W2155345760 cites W2124405213 @default.
- W2155345760 cites W2129438293 @default.
- W2155345760 cites W2131994307 @default.
- W2155345760 cites W2132400238 @default.
- W2155345760 cites W2133111499 @default.
- W2155345760 cites W2134773935 @default.
- W2155345760 cites W2135548733 @default.
- W2155345760 cites W2144692687 @default.
- W2155345760 cites W2147246240 @default.
- W2155345760 cites W2150036465 @default.
- W2155345760 cites W2164216268 @default.
- W2155345760 doi "https://doi.org/10.1186/1471-2105-12-390" @default.
- W2155345760 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3229535" @default.
- W2155345760 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21982277" @default.
- W2155345760 hasPublicationYear "2011" @default.
- W2155345760 type Work @default.
- W2155345760 sameAs 2155345760 @default.
- W2155345760 citedByCount "28" @default.
- W2155345760 countsByYear W21553457602012 @default.
- W2155345760 countsByYear W21553457602013 @default.
- W2155345760 countsByYear W21553457602014 @default.
- W2155345760 countsByYear W21553457602015 @default.
- W2155345760 countsByYear W21553457602016 @default.
- W2155345760 countsByYear W21553457602017 @default.
- W2155345760 countsByYear W21553457602019 @default.
- W2155345760 countsByYear W21553457602020 @default.
- W2155345760 countsByYear W21553457602021 @default.
- W2155345760 countsByYear W21553457602022 @default.
- W2155345760 countsByYear W21553457602023 @default.
- W2155345760 crossrefType "journal-article" @default.
- W2155345760 hasAuthorship W2155345760A5022568938 @default.
- W2155345760 hasAuthorship W2155345760A5031212174 @default.
- W2155345760 hasAuthorship W2155345760A5034145914 @default.
- W2155345760 hasAuthorship W2155345760A5036544220 @default.
- W2155345760 hasAuthorship W2155345760A5044328416 @default.
- W2155345760 hasBestOaLocation W21553457601 @default.
- W2155345760 hasConcept C104317684 @default.
- W2155345760 hasConcept C114614502 @default.
- W2155345760 hasConcept C119857082 @default.
- W2155345760 hasConcept C122280245 @default.
- W2155345760 hasConcept C12267149 @default.
- W2155345760 hasConcept C124101348 @default.
- W2155345760 hasConcept C136886441 @default.
- W2155345760 hasConcept C144024400 @default.
- W2155345760 hasConcept C150194340 @default.
- W2155345760 hasConcept C153180895 @default.
- W2155345760 hasConcept C154945302 @default.
- W2155345760 hasConcept C160446489 @default.
- W2155345760 hasConcept C162984825 @default.
- W2155345760 hasConcept C19165224 @default.
- W2155345760 hasConcept C2984324147 @default.
- W2155345760 hasConcept C33923547 @default.
- W2155345760 hasConcept C41008148 @default.
- W2155345760 hasConcept C55493867 @default.
- W2155345760 hasConcept C74193536 @default.
- W2155345760 hasConcept C81917197 @default.
- W2155345760 hasConcept C8415881 @default.
- W2155345760 hasConcept C86803240 @default.
- W2155345760 hasConcept C95371953 @default.
- W2155345760 hasConceptScore W2155345760C104317684 @default.
- W2155345760 hasConceptScore W2155345760C114614502 @default.
- W2155345760 hasConceptScore W2155345760C119857082 @default.
- W2155345760 hasConceptScore W2155345760C122280245 @default.
- W2155345760 hasConceptScore W2155345760C12267149 @default.
- W2155345760 hasConceptScore W2155345760C124101348 @default.
- W2155345760 hasConceptScore W2155345760C136886441 @default.
- W2155345760 hasConceptScore W2155345760C144024400 @default.