Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155346350> ?p ?o ?g. }
- W2155346350 endingPage "2623" @default.
- W2155346350 startingPage "2609" @default.
- W2155346350 abstract "This paper outlines the utility of statistical methods for sample surveys in analysing clinical trials data. Sample survey statisticians face a variety of complex data analysis issues deriving from the use of multi-stage probability sampling from finite populations. One such issue is that of clustering of observations at the various stages of sampling. Survey data analysis approaches developed to accommodate clustering in the sample design have more general application to clinical studies in which repeated measures structures are encountered. Situations where these methods are of interest include multi-visit studies where responses are observed at two or more time points for each patient, multi-period cross-over studies, and epidemiological studies for repeated occurrences of adverse events or illnesses. We describe statistical procedures for fitting multiple regression models to sample survey data that are more effective for repeated measures studies with complicated data structures than the more traditional approaches of multivariate repeated measures analysis. In this setting, one can specify a primary sampling unit within which repeated measures have intraclass correlation. This intraclass correlation is taken into account by sample survey regression methods through robust estimates of the standard errors of the regression coefficients. Regression estimates are obtained from model fitting estimation equations which ignore the correlation structure of the data (that is, computing procedures which assume that all observational units are independent or are from simple random samples). The analytic approach is straightforward to apply with logistic models for dichotomous data, proportional odds models for ordinal data, and linear models for continuously scaled data, and results are interpretable in terms of population average parameters. Through the features summarized here, the sample survey regression methods have many similarities to the broader family of methods based on generalized estimating equations (GEE). Sample survey methods for the analysis of time-to-event data have more recently been developed and implemented in the context of finite probability sampling. Given the importance of survival endpoints in late phase studies for drug development, these methods have clear utility in the area of clinical trials data analysis. A brief overview of methods for sample survey data analysis is first provided, followed by motivation for applying these methods to clinical trials data. Examples drawn from three clinical studies are provided to illustrate survey methods for logistic regression, proportional odds regression and proportional hazards regression. Potential problems with the proposed methods and ways of addressing them are discussed." @default.
- W2155346350 created "2016-06-24" @default.
- W2155346350 creator A5026070714 @default.
- W2155346350 creator A5033519431 @default.
- W2155346350 creator A5070572624 @default.
- W2155346350 date "2001-01-01" @default.
- W2155346350 modified "2023-09-27" @default.
- W2155346350 title "Applying sample survey methods to clinical trials data" @default.
- W2155346350 cites W1978136073 @default.
- W2155346350 cites W2004278186 @default.
- W2155346350 cites W2012658469 @default.
- W2155346350 cites W2018143015 @default.
- W2155346350 cites W2018813629 @default.
- W2155346350 cites W2030767901 @default.
- W2155346350 cites W2050762021 @default.
- W2155346350 cites W2062420892 @default.
- W2155346350 cites W2088839492 @default.
- W2155346350 cites W2114950585 @default.
- W2155346350 cites W2118502261 @default.
- W2155346350 cites W2135444901 @default.
- W2155346350 cites W2139983698 @default.
- W2155346350 cites W2149860264 @default.
- W2155346350 cites W2190280710 @default.
- W2155346350 cites W2326874293 @default.
- W2155346350 cites W2327261517 @default.
- W2155346350 cites W2335372547 @default.
- W2155346350 cites W2335699666 @default.
- W2155346350 cites W2476092673 @default.
- W2155346350 cites W4233471163 @default.
- W2155346350 doi "https://doi.org/10.1002/sim.732" @default.
- W2155346350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11523072" @default.
- W2155346350 hasPublicationYear "2001" @default.
- W2155346350 type Work @default.
- W2155346350 sameAs 2155346350 @default.
- W2155346350 citedByCount "54" @default.
- W2155346350 countsByYear W21553463502012 @default.
- W2155346350 countsByYear W21553463502013 @default.
- W2155346350 countsByYear W21553463502014 @default.
- W2155346350 countsByYear W21553463502015 @default.
- W2155346350 countsByYear W21553463502016 @default.
- W2155346350 countsByYear W21553463502017 @default.
- W2155346350 countsByYear W21553463502019 @default.
- W2155346350 countsByYear W21553463502020 @default.
- W2155346350 countsByYear W21553463502021 @default.
- W2155346350 countsByYear W21553463502022 @default.
- W2155346350 countsByYear W21553463502023 @default.
- W2155346350 crossrefType "journal-article" @default.
- W2155346350 hasAuthorship W2155346350A5026070714 @default.
- W2155346350 hasAuthorship W2155346350A5033519431 @default.
- W2155346350 hasAuthorship W2155346350A5070572624 @default.
- W2155346350 hasConcept C104709138 @default.
- W2155346350 hasConcept C105795698 @default.
- W2155346350 hasConcept C106131492 @default.
- W2155346350 hasConcept C114289077 @default.
- W2155346350 hasConcept C124101348 @default.
- W2155346350 hasConcept C126322002 @default.
- W2155346350 hasConcept C129848803 @default.
- W2155346350 hasConcept C140779682 @default.
- W2155346350 hasConcept C149782125 @default.
- W2155346350 hasConcept C151956035 @default.
- W2155346350 hasConcept C152877465 @default.
- W2155346350 hasConcept C161584116 @default.
- W2155346350 hasConcept C168743327 @default.
- W2155346350 hasConcept C171606756 @default.
- W2155346350 hasConcept C185592680 @default.
- W2155346350 hasConcept C198531522 @default.
- W2155346350 hasConcept C2908647359 @default.
- W2155346350 hasConcept C31972630 @default.
- W2155346350 hasConcept C33923547 @default.
- W2155346350 hasConcept C41008148 @default.
- W2155346350 hasConcept C43617362 @default.
- W2155346350 hasConcept C71924100 @default.
- W2155346350 hasConcept C73555534 @default.
- W2155346350 hasConcept C75373757 @default.
- W2155346350 hasConcept C95190672 @default.
- W2155346350 hasConcept C99454951 @default.
- W2155346350 hasConceptScore W2155346350C104709138 @default.
- W2155346350 hasConceptScore W2155346350C105795698 @default.
- W2155346350 hasConceptScore W2155346350C106131492 @default.
- W2155346350 hasConceptScore W2155346350C114289077 @default.
- W2155346350 hasConceptScore W2155346350C124101348 @default.
- W2155346350 hasConceptScore W2155346350C126322002 @default.
- W2155346350 hasConceptScore W2155346350C129848803 @default.
- W2155346350 hasConceptScore W2155346350C140779682 @default.
- W2155346350 hasConceptScore W2155346350C149782125 @default.
- W2155346350 hasConceptScore W2155346350C151956035 @default.
- W2155346350 hasConceptScore W2155346350C152877465 @default.
- W2155346350 hasConceptScore W2155346350C161584116 @default.
- W2155346350 hasConceptScore W2155346350C168743327 @default.
- W2155346350 hasConceptScore W2155346350C171606756 @default.
- W2155346350 hasConceptScore W2155346350C185592680 @default.
- W2155346350 hasConceptScore W2155346350C198531522 @default.
- W2155346350 hasConceptScore W2155346350C2908647359 @default.
- W2155346350 hasConceptScore W2155346350C31972630 @default.
- W2155346350 hasConceptScore W2155346350C33923547 @default.
- W2155346350 hasConceptScore W2155346350C41008148 @default.
- W2155346350 hasConceptScore W2155346350C43617362 @default.
- W2155346350 hasConceptScore W2155346350C71924100 @default.