Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155487617> ?p ?o ?g. }
- W2155487617 endingPage "380" @default.
- W2155487617 startingPage "371" @default.
- W2155487617 abstract "In this paper, we investigate several state-of-the-art machine-learning methods for automated classification of clustered microcalcifications (MCs). The classifier is part of a computer-aided diagnosis (CADx) scheme that is aimed to assisting radiologists in making more accurate diagnoses of breast cancer on mammograms. The methods we considered were: support vector machine (SVM), kernel Fisher discriminant (KFD), relevance vector machine (RVM), and committee machines (ensemble averaging and AdaBoost), of which most have been developed recently in statistical learning theory. We formulated differentiation of malignant from benign MCs as a supervised learning problem, and applied these learning methods to develop the classification algorithm. As input, these methods used image features automatically extracted from clustered MCs. We tested these methods using a database of 697 clinical mammograms from 386 cases, which included a wide spectrum of difficult-to-classify cases. We analyzed the distribution of the cases in this database using the multidimensional scaling technique, which reveals that in the feature space the malignant cases are not trivially separable from the benign ones. We used receiver operating characteristic (ROC) analysis to evaluate and to compare classification performance by the different methods. In addition, we also investigated how to combine information from multiple-view mammograms of the same case so that the best decision can be made by a classifier. In our experiments, the kernel-based methods (i.e., SVM, KFD, and RVM) yielded the best performance (Az = 0.85, SVM), significantly outperforming a well-established, clinically-proven CADx approach that is based on neural network (Az = 0.80)." @default.
- W2155487617 created "2016-06-24" @default.
- W2155487617 creator A5027400966 @default.
- W2155487617 creator A5042975544 @default.
- W2155487617 creator A5048510347 @default.
- W2155487617 creator A5079423135 @default.
- W2155487617 date "2005-03-01" @default.
- W2155487617 modified "2023-09-30" @default.
- W2155487617 title "A study on several Machine-learning methods for classification of Malignant and benign clustered microcalcifications" @default.
- W2155487617 cites W1481643961 @default.
- W2155487617 cites W1648445109 @default.
- W2155487617 cites W1971117990 @default.
- W2155487617 cites W1974788427 @default.
- W2155487617 cites W1981103483 @default.
- W2155487617 cites W1984278627 @default.
- W2155487617 cites W1988790447 @default.
- W2155487617 cites W2001619934 @default.
- W2155487617 cites W2004152841 @default.
- W2155487617 cites W2015056255 @default.
- W2155487617 cites W2035005104 @default.
- W2155487617 cites W2045234411 @default.
- W2155487617 cites W2059192589 @default.
- W2155487617 cites W2061201395 @default.
- W2155487617 cites W2069401973 @default.
- W2155487617 cites W2117812871 @default.
- W2155487617 cites W2120515362 @default.
- W2155487617 cites W2124351082 @default.
- W2155487617 cites W2127955083 @default.
- W2155487617 cites W2133458583 @default.
- W2155487617 cites W2138309086 @default.
- W2155487617 cites W2139212933 @default.
- W2155487617 cites W2145283065 @default.
- W2155487617 cites W2150796457 @default.
- W2155487617 cites W2151817208 @default.
- W2155487617 cites W2163842499 @default.
- W2155487617 cites W2164598857 @default.
- W2155487617 cites W4205380271 @default.
- W2155487617 cites W4293007919 @default.
- W2155487617 doi "https://doi.org/10.1109/tmi.2004.842457" @default.
- W2155487617 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15754987" @default.
- W2155487617 hasPublicationYear "2005" @default.
- W2155487617 type Work @default.
- W2155487617 sameAs 2155487617 @default.
- W2155487617 citedByCount "266" @default.
- W2155487617 countsByYear W21554876172012 @default.
- W2155487617 countsByYear W21554876172013 @default.
- W2155487617 countsByYear W21554876172014 @default.
- W2155487617 countsByYear W21554876172015 @default.
- W2155487617 countsByYear W21554876172016 @default.
- W2155487617 countsByYear W21554876172017 @default.
- W2155487617 countsByYear W21554876172018 @default.
- W2155487617 countsByYear W21554876172019 @default.
- W2155487617 countsByYear W21554876172020 @default.
- W2155487617 countsByYear W21554876172021 @default.
- W2155487617 countsByYear W21554876172022 @default.
- W2155487617 countsByYear W21554876172023 @default.
- W2155487617 crossrefType "journal-article" @default.
- W2155487617 hasAuthorship W2155487617A5027400966 @default.
- W2155487617 hasAuthorship W2155487617A5042975544 @default.
- W2155487617 hasAuthorship W2155487617A5048510347 @default.
- W2155487617 hasAuthorship W2155487617A5079423135 @default.
- W2155487617 hasConcept C115961682 @default.
- W2155487617 hasConcept C119857082 @default.
- W2155487617 hasConcept C121608353 @default.
- W2155487617 hasConcept C12267149 @default.
- W2155487617 hasConcept C126322002 @default.
- W2155487617 hasConcept C126838900 @default.
- W2155487617 hasConcept C141404830 @default.
- W2155487617 hasConcept C14948415 @default.
- W2155487617 hasConcept C153180895 @default.
- W2155487617 hasConcept C154945302 @default.
- W2155487617 hasConcept C2779549770 @default.
- W2155487617 hasConcept C2780472235 @default.
- W2155487617 hasConcept C41008148 @default.
- W2155487617 hasConcept C50644808 @default.
- W2155487617 hasConcept C530470458 @default.
- W2155487617 hasConcept C534262118 @default.
- W2155487617 hasConcept C58471807 @default.
- W2155487617 hasConcept C69738355 @default.
- W2155487617 hasConcept C71924100 @default.
- W2155487617 hasConcept C75294576 @default.
- W2155487617 hasConceptScore W2155487617C115961682 @default.
- W2155487617 hasConceptScore W2155487617C119857082 @default.
- W2155487617 hasConceptScore W2155487617C121608353 @default.
- W2155487617 hasConceptScore W2155487617C12267149 @default.
- W2155487617 hasConceptScore W2155487617C126322002 @default.
- W2155487617 hasConceptScore W2155487617C126838900 @default.
- W2155487617 hasConceptScore W2155487617C141404830 @default.
- W2155487617 hasConceptScore W2155487617C14948415 @default.
- W2155487617 hasConceptScore W2155487617C153180895 @default.
- W2155487617 hasConceptScore W2155487617C154945302 @default.
- W2155487617 hasConceptScore W2155487617C2779549770 @default.
- W2155487617 hasConceptScore W2155487617C2780472235 @default.
- W2155487617 hasConceptScore W2155487617C41008148 @default.
- W2155487617 hasConceptScore W2155487617C50644808 @default.
- W2155487617 hasConceptScore W2155487617C530470458 @default.
- W2155487617 hasConceptScore W2155487617C534262118 @default.
- W2155487617 hasConceptScore W2155487617C58471807 @default.