Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155653247> ?p ?o ?g. }
- W2155653247 endingPage "4861" @default.
- W2155653247 startingPage "4845" @default.
- W2155653247 abstract "It is well established that Alzheimer's amyloid beta-peptides reduce the membrane barrier to ion transport. The prevailing model ascribes the resulting interference with ion homeostasis to the formation of peptide pores across the bilayer. In this work, we examine the interaction of soluble prefibrillar amyloid beta (Abeta(1-42))-oligomers with bilayer models, observing also dramatic increases in ion current at micromolar peptide concentrations. We demonstrate that the Abeta-induced ion conductances across free-standing membranes and across substrate-supported tethered bilayers are quantitatively similar and depend on membrane composition. However, characteristic signatures of the molecular transport mechanism were distinctly different from ion transfer through water-filled pores, as shown by a quantitative comparison of the membrane response to Abeta-oligomers and to the bacterial toxin alpha-hemolysin. Neutron reflection from tethered membranes showed that Abeta-oligomers insert into the bilayer, affecting both membrane leaflets. By measuring the capacitance of peptide-free membranes, as well as their geometrical thicknesses, the dielectric constants in the aliphatic cores of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-diphytanoyl-sn-glycero-3-phosphocholine bilayers were determined to be epsilon = 2.8 and 2.2, respectively. The magnitude of the Abeta-induced increase in epsilon indicates that Abeta-oligomers affect membranes by inducing lateral heterogeneity in the bilayers, but an increase in the water content of the bilayers was not observed. The activation energy for Abeta-induced ion transport across the membrane is at least three times higher than that measured for membranes reconstituted with alpha-hemolysin pores, E(a) = 36.8 vs. 9.9 kJ/mol, indicating that the molecular mechanisms underlying both transport processes are fundamentally different. The Abeta-induced membrane conductance shows a nonlinear dependence on the peptide concentration in the membrane. Moreover, E(a) depends on peptide concentration. These observations suggest that cooperativity and/or conformational changes of the Abeta-oligomer particles upon transfer from the aqueous to the hydrocarbon environment play a prominent role in the interaction of the peptide with the membrane. A model in which Abeta-oligomers insert into the hydrophobic core of the membrane-where they lead to a local increase in epsilon and a concomitant reduction of the membrane barrier-describes the experimental data quantitatively." @default.
- W2155653247 created "2016-06-24" @default.
- W2155653247 creator A5007936277 @default.
- W2155653247 creator A5032053826 @default.
- W2155653247 creator A5056049276 @default.
- W2155653247 creator A5057047290 @default.
- W2155653247 creator A5062382690 @default.
- W2155653247 creator A5069773413 @default.
- W2155653247 creator A5076936216 @default.
- W2155653247 creator A5079116205 @default.
- W2155653247 date "2008-11-01" @default.
- W2155653247 modified "2023-10-11" @default.
- W2155653247 title "Soluble Amyloid β-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity" @default.
- W2155653247 cites W1577773742 @default.
- W2155653247 cites W1603448131 @default.
- W2155653247 cites W1678350171 @default.
- W2155653247 cites W1920223597 @default.
- W2155653247 cites W1965591477 @default.
- W2155653247 cites W1965670935 @default.
- W2155653247 cites W1971718482 @default.
- W2155653247 cites W1973504417 @default.
- W2155653247 cites W1977240030 @default.
- W2155653247 cites W1978464661 @default.
- W2155653247 cites W1978828831 @default.
- W2155653247 cites W1979706138 @default.
- W2155653247 cites W1980028783 @default.
- W2155653247 cites W1980099228 @default.
- W2155653247 cites W1981128745 @default.
- W2155653247 cites W1988560523 @default.
- W2155653247 cites W1990451546 @default.
- W2155653247 cites W1991902432 @default.
- W2155653247 cites W1997585234 @default.
- W2155653247 cites W2016630529 @default.
- W2155653247 cites W2019526697 @default.
- W2155653247 cites W2020348789 @default.
- W2155653247 cites W2021920162 @default.
- W2155653247 cites W2028082955 @default.
- W2155653247 cites W2028505648 @default.
- W2155653247 cites W2029015814 @default.
- W2155653247 cites W2030683115 @default.
- W2155653247 cites W2045720863 @default.
- W2155653247 cites W2048191546 @default.
- W2155653247 cites W2054086227 @default.
- W2155653247 cites W2054649073 @default.
- W2155653247 cites W2060210385 @default.
- W2155653247 cites W2061619331 @default.
- W2155653247 cites W2061627162 @default.
- W2155653247 cites W2062461630 @default.
- W2155653247 cites W2062990728 @default.
- W2155653247 cites W2063236931 @default.
- W2155653247 cites W2065763357 @default.
- W2155653247 cites W2070999775 @default.
- W2155653247 cites W2073686561 @default.
- W2155653247 cites W2073810813 @default.
- W2155653247 cites W2075338396 @default.
- W2155653247 cites W2075930760 @default.
- W2155653247 cites W2081883200 @default.
- W2155653247 cites W2083920564 @default.
- W2155653247 cites W2086529087 @default.
- W2155653247 cites W2087861584 @default.
- W2155653247 cites W2089843826 @default.
- W2155653247 cites W2093861673 @default.
- W2155653247 cites W2096336861 @default.
- W2155653247 cites W2096410114 @default.
- W2155653247 cites W2098576607 @default.
- W2155653247 cites W2098613559 @default.
- W2155653247 cites W2100610042 @default.
- W2155653247 cites W2100817247 @default.
- W2155653247 cites W2101532349 @default.
- W2155653247 cites W2103440561 @default.
- W2155653247 cites W2104580232 @default.
- W2155653247 cites W2109713145 @default.
- W2155653247 cites W2112632406 @default.
- W2155653247 cites W2121963977 @default.
- W2155653247 cites W2122294662 @default.
- W2155653247 cites W2129412868 @default.
- W2155653247 cites W2129583700 @default.
- W2155653247 cites W2130786862 @default.
- W2155653247 cites W2134909516 @default.
- W2155653247 cites W2146715943 @default.
- W2155653247 cites W2146914013 @default.
- W2155653247 cites W2149478284 @default.
- W2155653247 cites W2150999725 @default.
- W2155653247 cites W2167389261 @default.
- W2155653247 cites W2168715581 @default.
- W2155653247 cites W2169555689 @default.
- W2155653247 cites W2616003751 @default.
- W2155653247 cites W4249141617 @default.
- W2155653247 cites W4320800140 @default.
- W2155653247 doi "https://doi.org/10.1529/biophysj.108.130997" @default.
- W2155653247 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2576380" @default.
- W2155653247 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18515395" @default.
- W2155653247 hasPublicationYear "2008" @default.
- W2155653247 type Work @default.
- W2155653247 sameAs 2155653247 @default.
- W2155653247 citedByCount "192" @default.
- W2155653247 countsByYear W21556532472012 @default.
- W2155653247 countsByYear W21556532472013 @default.