Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155771856> ?p ?o ?g. }
- W2155771856 endingPage "47" @default.
- W2155771856 startingPage "36" @default.
- W2155771856 abstract "A wide range of positive and negative results have been established for learning different classes of Boolean functions from uniformly distributed random examples. However, polynomial-time algorithms have thus far been obtained almost exclusively for various classes of monotone functions, while the computational hardness results obtained to date have all been for various classes of general (nonmonotone) functions. Motivated by this disparity between known positive results (for monotone functions) and negative results (for nonmonotone functions), we establish strong computational limitations on the efficient learnability of various classes of monotone functions.We give several such hardness results which are provably almost optimal since they nearly match known positive results. Some of our results show cryptographic hardness of learning polynomial-size monotone circuits to accuracy only slightly greater than (1/2 + 1/sqrt{n}); this accuracy bound is close to optimal by known positive results (Blum et al., FOCS ’98). Other results show that under a plausible cryptographic hardness assumption, a class of constant-depth, sub-polynomial-size circuits computing monotone functions is hard to learn; this result is close to optimal in terms of the circuit size parameter by known positive results as well (Servedio, Information and Computation ’04). Our main tool is a complexity-theoretic approach to hardness amplification via noise sensitivity of monotone functions that was pioneered by O’Donnell (JCSS ’04).KeywordsBoolean FunctionMonotone FunctionPseudorandom FunctionMembership QueryNoise StabilityThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves." @default.
- W2155771856 created "2016-06-24" @default.
- W2155771856 creator A5005725877 @default.
- W2155771856 creator A5014866889 @default.
- W2155771856 creator A5022302162 @default.
- W2155771856 creator A5052376364 @default.
- W2155771856 creator A5058081649 @default.
- W2155771856 creator A5058397218 @default.
- W2155771856 date "2008-01-01" @default.
- W2155771856 modified "2023-09-24" @default.
- W2155771856 title "Optimal Cryptographic Hardness of Learning Monotone Functions" @default.
- W2155771856 cites W1856342626 @default.
- W2155771856 cites W2011717937 @default.
- W2155771856 cites W2029370139 @default.
- W2155771856 cites W2042194938 @default.
- W2155771856 cites W2063003848 @default.
- W2155771856 cites W2079520411 @default.
- W2155771856 cites W2079866219 @default.
- W2155771856 cites W2100654536 @default.
- W2155771856 cites W2103749128 @default.
- W2155771856 cites W2124218043 @default.
- W2155771856 cites W2144579822 @default.
- W2155771856 cites W2168115971 @default.
- W2155771856 cites W3021570316 @default.
- W2155771856 cites W4233039852 @default.
- W2155771856 cites W4238893454 @default.
- W2155771856 doi "https://doi.org/10.1007/978-3-540-70575-8_4" @default.
- W2155771856 hasPublicationYear "2008" @default.
- W2155771856 type Work @default.
- W2155771856 sameAs 2155771856 @default.
- W2155771856 citedByCount "7" @default.
- W2155771856 countsByYear W21557718562012 @default.
- W2155771856 countsByYear W21557718562013 @default.
- W2155771856 countsByYear W21557718562015 @default.
- W2155771856 countsByYear W21557718562019 @default.
- W2155771856 crossrefType "book-chapter" @default.
- W2155771856 hasAuthorship W2155771856A5005725877 @default.
- W2155771856 hasAuthorship W2155771856A5014866889 @default.
- W2155771856 hasAuthorship W2155771856A5022302162 @default.
- W2155771856 hasAuthorship W2155771856A5052376364 @default.
- W2155771856 hasAuthorship W2155771856A5058081649 @default.
- W2155771856 hasAuthorship W2155771856A5058397218 @default.
- W2155771856 hasBestOaLocation W21557718562 @default.
- W2155771856 hasConcept C11413529 @default.
- W2155771856 hasConcept C118615104 @default.
- W2155771856 hasConcept C134306372 @default.
- W2155771856 hasConcept C141796577 @default.
- W2155771856 hasConcept C154945302 @default.
- W2155771856 hasConcept C178489894 @default.
- W2155771856 hasConcept C179799912 @default.
- W2155771856 hasConcept C187455244 @default.
- W2155771856 hasConcept C2524010 @default.
- W2155771856 hasConcept C2777723229 @default.
- W2155771856 hasConcept C2834757 @default.
- W2155771856 hasConcept C311688 @default.
- W2155771856 hasConcept C33923547 @default.
- W2155771856 hasConcept C39637292 @default.
- W2155771856 hasConcept C41008148 @default.
- W2155771856 hasConcept C90119067 @default.
- W2155771856 hasConceptScore W2155771856C11413529 @default.
- W2155771856 hasConceptScore W2155771856C118615104 @default.
- W2155771856 hasConceptScore W2155771856C134306372 @default.
- W2155771856 hasConceptScore W2155771856C141796577 @default.
- W2155771856 hasConceptScore W2155771856C154945302 @default.
- W2155771856 hasConceptScore W2155771856C178489894 @default.
- W2155771856 hasConceptScore W2155771856C179799912 @default.
- W2155771856 hasConceptScore W2155771856C187455244 @default.
- W2155771856 hasConceptScore W2155771856C2524010 @default.
- W2155771856 hasConceptScore W2155771856C2777723229 @default.
- W2155771856 hasConceptScore W2155771856C2834757 @default.
- W2155771856 hasConceptScore W2155771856C311688 @default.
- W2155771856 hasConceptScore W2155771856C33923547 @default.
- W2155771856 hasConceptScore W2155771856C39637292 @default.
- W2155771856 hasConceptScore W2155771856C41008148 @default.
- W2155771856 hasConceptScore W2155771856C90119067 @default.
- W2155771856 hasLocation W21557718561 @default.
- W2155771856 hasLocation W21557718562 @default.
- W2155771856 hasLocation W21557718563 @default.
- W2155771856 hasOpenAccess W2155771856 @default.
- W2155771856 hasPrimaryLocation W21557718561 @default.
- W2155771856 hasRelatedWork W1505739153 @default.
- W2155771856 hasRelatedWork W1525610820 @default.
- W2155771856 hasRelatedWork W1580838017 @default.
- W2155771856 hasRelatedWork W1714759042 @default.
- W2155771856 hasRelatedWork W1989453388 @default.
- W2155771856 hasRelatedWork W2019363670 @default.
- W2155771856 hasRelatedWork W2027221236 @default.
- W2155771856 hasRelatedWork W2042194938 @default.
- W2155771856 hasRelatedWork W2055064797 @default.
- W2155771856 hasRelatedWork W2085693797 @default.
- W2155771856 hasRelatedWork W2123346810 @default.
- W2155771856 hasRelatedWork W2144579822 @default.
- W2155771856 hasRelatedWork W2152927719 @default.
- W2155771856 hasRelatedWork W2168115971 @default.
- W2155771856 hasRelatedWork W2170827767 @default.
- W2155771856 hasRelatedWork W2474705870 @default.
- W2155771856 hasRelatedWork W2809402609 @default.
- W2155771856 hasRelatedWork W2963396042 @default.