Matches in SemOpenAlex for { <https://semopenalex.org/work/W2155802808> ?p ?o ?g. }
- W2155802808 abstract "We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. We show how to approximately map the conservative part of the third post-Newtonian (3PN) dynamics of two spinning black holes of masses ${m}_{1},$ ${m}_{2}$ and spins ${mathit{S}}_{1},$ ${mathit{S}}_{2}$ onto the dynamics of a non-spinning particle of mass $ensuremath{mu}ensuremath{equiv}{m}_{1}{m}_{2}{/(m}_{1}{+m}_{2})$ in a certain effective metric ${g}_{ensuremath{mu}ensuremath{nu}}^{mathrm{eff}}{(x}^{ensuremath{lambda}};M,ensuremath{nu},mathit{a})$ which can be viewed either as a spin deformation [with the deformation parameter $mathit{a}ensuremath{equiv}{mathit{S}}_{mathrm{eff}}/M]$ of the recently constructed 3PN effective metric ${g}_{ensuremath{mu}ensuremath{nu}}^{mathrm{eff}}{(x}^{ensuremath{lambda}};M,ensuremath{nu}),$ or as a $ensuremath{nu}$ deformation [with the comparable-mass deformation parameter $ensuremath{nu}ensuremath{equiv}{m}_{1}{m}_{2}{/(m}_{1}{+m}_{2}{)}^{2}]$ of a Kerr metric of mass $Mensuremath{equiv}{m}_{1}{+m}_{2}$ and (effective) spin ${mathit{S}}_{mathrm{eff}}ensuremath{equiv}[{1+3m}_{2}{/(4m}_{1})]{mathit{S}}_{1}+[{1+3m}_{1}{/(4m}_{2})]{mathit{S}}_{2}.$ The combination of the effective one-body approach, and of a Pad'e definition of the crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of $6 {GM/c}^{2}.$ The complete (conservative) phase-space evolution equations of binary spinning black hole systems are written down and their exact and approximate first integrals are discussed. This leads to the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum of LSSO's are studied in some detail. It is argued that for most (but not all) of the parameter space of two spinning holes the approximate (leading-order) effective one-body approach introduced here gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO-VIRGO-GEO observations, favoring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality." @default.
- W2155802808 created "2016-06-24" @default.
- W2155802808 creator A5068574814 @default.
- W2155802808 date "2001-11-27" @default.
- W2155802808 modified "2023-10-02" @default.
- W2155802808 title "Coalescence of two spinning black holes: An effective one-body approach" @default.
- W2155802808 cites W1965995299 @default.
- W2155802808 cites W1970608274 @default.
- W2155802808 cites W1975481960 @default.
- W2155802808 cites W1978411982 @default.
- W2155802808 cites W1978510652 @default.
- W2155802808 cites W1984734622 @default.
- W2155802808 cites W1985069850 @default.
- W2155802808 cites W1986175445 @default.
- W2155802808 cites W1990562881 @default.
- W2155802808 cites W1991647637 @default.
- W2155802808 cites W1993912673 @default.
- W2155802808 cites W1995114597 @default.
- W2155802808 cites W1996425791 @default.
- W2155802808 cites W2005307185 @default.
- W2155802808 cites W2007566995 @default.
- W2155802808 cites W2010991696 @default.
- W2155802808 cites W2012975647 @default.
- W2155802808 cites W2013666099 @default.
- W2155802808 cites W2024784877 @default.
- W2155802808 cites W2031012295 @default.
- W2155802808 cites W2037839129 @default.
- W2155802808 cites W2039964660 @default.
- W2155802808 cites W2045282274 @default.
- W2155802808 cites W2046445253 @default.
- W2155802808 cites W2049173669 @default.
- W2155802808 cites W2050844366 @default.
- W2155802808 cites W2063137056 @default.
- W2155802808 cites W2067487282 @default.
- W2155802808 cites W2069651370 @default.
- W2155802808 cites W2070437288 @default.
- W2155802808 cites W2075153538 @default.
- W2155802808 cites W2075705356 @default.
- W2155802808 cites W2076292770 @default.
- W2155802808 cites W2077590995 @default.
- W2155802808 cites W2082149485 @default.
- W2155802808 cites W2098198048 @default.
- W2155802808 cites W2103819762 @default.
- W2155802808 cites W2104521442 @default.
- W2155802808 cites W2109089839 @default.
- W2155802808 cites W2116108818 @default.
- W2155802808 cites W2118398060 @default.
- W2155802808 cites W2131554577 @default.
- W2155802808 cites W2131759045 @default.
- W2155802808 cites W2140973976 @default.
- W2155802808 cites W2141993941 @default.
- W2155802808 cites W2144684787 @default.
- W2155802808 cites W2148994792 @default.
- W2155802808 cites W2150850941 @default.
- W2155802808 cites W2158984830 @default.
- W2155802808 cites W2167837229 @default.
- W2155802808 cites W2180326370 @default.
- W2155802808 cites W2231272065 @default.
- W2155802808 cites W2763379110 @default.
- W2155802808 cites W2952096964 @default.
- W2155802808 cites W3101285747 @default.
- W2155802808 cites W3103591927 @default.
- W2155802808 cites W3104004799 @default.
- W2155802808 doi "https://doi.org/10.1103/physrevd.64.124013" @default.
- W2155802808 hasPublicationYear "2001" @default.
- W2155802808 type Work @default.
- W2155802808 sameAs 2155802808 @default.
- W2155802808 citedByCount "447" @default.
- W2155802808 countsByYear W21558028082012 @default.
- W2155802808 countsByYear W21558028082013 @default.
- W2155802808 countsByYear W21558028082014 @default.
- W2155802808 countsByYear W21558028082015 @default.
- W2155802808 countsByYear W21558028082016 @default.
- W2155802808 countsByYear W21558028082017 @default.
- W2155802808 countsByYear W21558028082018 @default.
- W2155802808 countsByYear W21558028082019 @default.
- W2155802808 countsByYear W21558028082020 @default.
- W2155802808 countsByYear W21558028082021 @default.
- W2155802808 countsByYear W21558028082022 @default.
- W2155802808 countsByYear W21558028082023 @default.
- W2155802808 crossrefType "journal-article" @default.
- W2155802808 hasAuthorship W2155802808A5068574814 @default.
- W2155802808 hasBestOaLocation W21558028082 @default.
- W2155802808 hasConcept C10138342 @default.
- W2155802808 hasConcept C121332964 @default.
- W2155802808 hasConcept C162324750 @default.
- W2155802808 hasConcept C182306322 @default.
- W2155802808 hasConcept C37914503 @default.
- W2155802808 hasConceptScore W2155802808C10138342 @default.
- W2155802808 hasConceptScore W2155802808C121332964 @default.
- W2155802808 hasConceptScore W2155802808C162324750 @default.
- W2155802808 hasConceptScore W2155802808C182306322 @default.
- W2155802808 hasConceptScore W2155802808C37914503 @default.
- W2155802808 hasIssue "12" @default.
- W2155802808 hasLocation W21558028081 @default.
- W2155802808 hasLocation W21558028082 @default.
- W2155802808 hasOpenAccess W2155802808 @default.
- W2155802808 hasPrimaryLocation W21558028081 @default.
- W2155802808 hasRelatedWork W2003126205 @default.
- W2155802808 hasRelatedWork W2026168617 @default.