Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156241735> ?p ?o ?g. }
- W2156241735 endingPage "194" @default.
- W2156241735 startingPage "183" @default.
- W2156241735 abstract "Traditional CBIR method relies on visual features to identify objects in an image and uses predefined terms to annotate images, thus it fails to depict the implicit meanings. Recent textual content analysis methods applied to image annotation were blamed for their complexity of computation. In this research, we propose a corpus-free, relatively light computation of term segmentation method, namely Iterative Merging Chinese Segmentation (IMCS) , to identify representative terms from a single web page to obtain anecdotes as a semantic enrichment of the target image. It requires minimum computation needs that allows to share characters/words and facilitate their use at fine granularities without prohibitive cost. In the experiment, this method achieves a precision rate of 86.02%, and gains acceptance from expert rating and user rating of 75% and 68%, respectively. In performance testing, it only takes 0.006 second to process each image in a collection of 1,728 testing data set." @default.
- W2156241735 created "2016-06-24" @default.
- W2156241735 creator A5043135511 @default.
- W2156241735 creator A5050496746 @default.
- W2156241735 date "2013-01-01" @default.
- W2156241735 modified "2023-09-27" @default.
- W2156241735 title "Applying a Lightweight Iterative Merging Chinese Segmentation in Web Image Annotation" @default.
- W2156241735 cites W1965599733 @default.
- W2156241735 cites W1991126947 @default.
- W2156241735 cites W1994582333 @default.
- W2156241735 cites W1996141620 @default.
- W2156241735 cites W1998844786 @default.
- W2156241735 cites W2021350584 @default.
- W2156241735 cites W2025690557 @default.
- W2156241735 cites W2031504332 @default.
- W2156241735 cites W2039965491 @default.
- W2156241735 cites W2110227879 @default.
- W2156241735 cites W2119948965 @default.
- W2156241735 cites W2122340686 @default.
- W2156241735 cites W2123241287 @default.
- W2156241735 cites W2130730142 @default.
- W2156241735 cites W2140275264 @default.
- W2156241735 cites W2140789195 @default.
- W2156241735 cites W2147888113 @default.
- W2156241735 cites W2155417005 @default.
- W2156241735 cites W2161547966 @default.
- W2156241735 doi "https://doi.org/10.1007/978-3-642-39712-7_14" @default.
- W2156241735 hasPublicationYear "2013" @default.
- W2156241735 type Work @default.
- W2156241735 sameAs 2156241735 @default.
- W2156241735 citedByCount "1" @default.
- W2156241735 countsByYear W21562417352015 @default.
- W2156241735 crossrefType "book-chapter" @default.
- W2156241735 hasAuthorship W2156241735A5043135511 @default.
- W2156241735 hasAuthorship W2156241735A5050496746 @default.
- W2156241735 hasConcept C111919701 @default.
- W2156241735 hasConcept C11413529 @default.
- W2156241735 hasConcept C115903868 @default.
- W2156241735 hasConcept C115961682 @default.
- W2156241735 hasConcept C124101348 @default.
- W2156241735 hasConcept C124504099 @default.
- W2156241735 hasConcept C143587482 @default.
- W2156241735 hasConcept C153180895 @default.
- W2156241735 hasConcept C154945302 @default.
- W2156241735 hasConcept C1667742 @default.
- W2156241735 hasConcept C177264268 @default.
- W2156241735 hasConcept C199360897 @default.
- W2156241735 hasConcept C199579030 @default.
- W2156241735 hasConcept C23123220 @default.
- W2156241735 hasConcept C2776321320 @default.
- W2156241735 hasConcept C41008148 @default.
- W2156241735 hasConcept C45374587 @default.
- W2156241735 hasConcept C89600930 @default.
- W2156241735 hasConcept C98045186 @default.
- W2156241735 hasConceptScore W2156241735C111919701 @default.
- W2156241735 hasConceptScore W2156241735C11413529 @default.
- W2156241735 hasConceptScore W2156241735C115903868 @default.
- W2156241735 hasConceptScore W2156241735C115961682 @default.
- W2156241735 hasConceptScore W2156241735C124101348 @default.
- W2156241735 hasConceptScore W2156241735C124504099 @default.
- W2156241735 hasConceptScore W2156241735C143587482 @default.
- W2156241735 hasConceptScore W2156241735C153180895 @default.
- W2156241735 hasConceptScore W2156241735C154945302 @default.
- W2156241735 hasConceptScore W2156241735C1667742 @default.
- W2156241735 hasConceptScore W2156241735C177264268 @default.
- W2156241735 hasConceptScore W2156241735C199360897 @default.
- W2156241735 hasConceptScore W2156241735C199579030 @default.
- W2156241735 hasConceptScore W2156241735C23123220 @default.
- W2156241735 hasConceptScore W2156241735C2776321320 @default.
- W2156241735 hasConceptScore W2156241735C41008148 @default.
- W2156241735 hasConceptScore W2156241735C45374587 @default.
- W2156241735 hasConceptScore W2156241735C89600930 @default.
- W2156241735 hasConceptScore W2156241735C98045186 @default.
- W2156241735 hasLocation W21562417351 @default.
- W2156241735 hasOpenAccess W2156241735 @default.
- W2156241735 hasPrimaryLocation W21562417351 @default.
- W2156241735 hasRelatedWork W128532565 @default.
- W2156241735 hasRelatedWork W1549630506 @default.
- W2156241735 hasRelatedWork W1982951827 @default.
- W2156241735 hasRelatedWork W1995282358 @default.
- W2156241735 hasRelatedWork W1996953927 @default.
- W2156241735 hasRelatedWork W2029215718 @default.
- W2156241735 hasRelatedWork W2039735230 @default.
- W2156241735 hasRelatedWork W2063249773 @default.
- W2156241735 hasRelatedWork W2069259744 @default.
- W2156241735 hasRelatedWork W2070855656 @default.
- W2156241735 hasRelatedWork W2535491151 @default.
- W2156241735 hasRelatedWork W2862287278 @default.
- W2156241735 hasRelatedWork W2909712455 @default.
- W2156241735 hasRelatedWork W2996867699 @default.
- W2156241735 hasRelatedWork W3118508434 @default.
- W2156241735 hasRelatedWork W2094240891 @default.
- W2156241735 hasRelatedWork W2876488546 @default.
- W2156241735 hasRelatedWork W2930800865 @default.
- W2156241735 hasRelatedWork W2932678665 @default.
- W2156241735 hasRelatedWork W3177930984 @default.
- W2156241735 isParatext "false" @default.
- W2156241735 isRetracted "false" @default.