Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156252538> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2156252538 endingPage "265" @default.
- W2156252538 startingPage "254" @default.
- W2156252538 abstract "Bayesian networks are stochastic models, widely adopted to encode knowledge in several fields. One of the most interesting features of a Bayesian network is the possibility of learning its structure from a set of data, and subsequently use the resulting model to perform new predictions. Structure learning for such models is a NP-hard problem, for which the scientific community developed two main approaches: score-and-search metaheuristics, often evolutionary-based, and dependency-analysis deterministic algorithms, based on stochastic tests. State-of-the-art solutions have been presented in both domains, but all methodologies start from the assumption of having access to large sets of learning data available, often numbering thousands of samples. This is not the case for many real-world applications, especially in the food processing and research industry. This paper proposes an evolutionary approach to the Bayesian structure learning problem, specifically tailored for learning sets of limited size. Falling in the category of score-and-search techniques, the methodology exploits an evolutionary algorithm able to work directly on graph structures, previously used for assembly language generation, and a scoring function based on the Akaike Information Criterion, a well-studied metric of stochastic model performance. Experimental results show that the approach is able to outperform a state-of-the-art dependency-analysis algorithm, providing better models for small datasets." @default.
- W2156252538 created "2016-06-24" @default.
- W2156252538 creator A5003032765 @default.
- W2156252538 creator A5013543532 @default.
- W2156252538 creator A5024501121 @default.
- W2156252538 creator A5038913522 @default.
- W2156252538 creator A5061698976 @default.
- W2156252538 date "2012-01-01" @default.
- W2156252538 modified "2023-10-10" @default.
- W2156252538 title "Bayesian Network Structure Learning from Limited Datasets through Graph Evolution" @default.
- W2156252538 cites W1529461101 @default.
- W2156252538 cites W1974894982 @default.
- W2156252538 cites W2022710276 @default.
- W2156252538 cites W2041404184 @default.
- W2156252538 cites W2073541215 @default.
- W2156252538 cites W2076753758 @default.
- W2156252538 cites W2084666366 @default.
- W2156252538 cites W2086345724 @default.
- W2156252538 cites W2129999935 @default.
- W2156252538 cites W2142635246 @default.
- W2156252538 cites W2148670332 @default.
- W2156252538 cites W3103258287 @default.
- W2156252538 cites W4207030835 @default.
- W2156252538 cites W4302423442 @default.
- W2156252538 doi "https://doi.org/10.1007/978-3-642-29139-5_22" @default.
- W2156252538 hasPublicationYear "2012" @default.
- W2156252538 type Work @default.
- W2156252538 sameAs 2156252538 @default.
- W2156252538 citedByCount "13" @default.
- W2156252538 countsByYear W21562525382013 @default.
- W2156252538 countsByYear W21562525382014 @default.
- W2156252538 countsByYear W21562525382015 @default.
- W2156252538 countsByYear W21562525382016 @default.
- W2156252538 countsByYear W21562525382017 @default.
- W2156252538 countsByYear W21562525382018 @default.
- W2156252538 crossrefType "book-chapter" @default.
- W2156252538 hasAuthorship W2156252538A5003032765 @default.
- W2156252538 hasAuthorship W2156252538A5013543532 @default.
- W2156252538 hasAuthorship W2156252538A5024501121 @default.
- W2156252538 hasAuthorship W2156252538A5038913522 @default.
- W2156252538 hasAuthorship W2156252538A5061698976 @default.
- W2156252538 hasBestOaLocation W21562525382 @default.
- W2156252538 hasConcept C119857082 @default.
- W2156252538 hasConcept C124101348 @default.
- W2156252538 hasConcept C132525143 @default.
- W2156252538 hasConcept C154945302 @default.
- W2156252538 hasConcept C159149176 @default.
- W2156252538 hasConcept C33724603 @default.
- W2156252538 hasConcept C41008148 @default.
- W2156252538 hasConcept C80444323 @default.
- W2156252538 hasConceptScore W2156252538C119857082 @default.
- W2156252538 hasConceptScore W2156252538C124101348 @default.
- W2156252538 hasConceptScore W2156252538C132525143 @default.
- W2156252538 hasConceptScore W2156252538C154945302 @default.
- W2156252538 hasConceptScore W2156252538C159149176 @default.
- W2156252538 hasConceptScore W2156252538C33724603 @default.
- W2156252538 hasConceptScore W2156252538C41008148 @default.
- W2156252538 hasConceptScore W2156252538C80444323 @default.
- W2156252538 hasLocation W21562525381 @default.
- W2156252538 hasLocation W21562525382 @default.
- W2156252538 hasLocation W21562525383 @default.
- W2156252538 hasLocation W21562525384 @default.
- W2156252538 hasLocation W21562525385 @default.
- W2156252538 hasOpenAccess W2156252538 @default.
- W2156252538 hasPrimaryLocation W21562525381 @default.
- W2156252538 hasRelatedWork W2371925260 @default.
- W2156252538 hasRelatedWork W2381390841 @default.
- W2156252538 hasRelatedWork W2955463503 @default.
- W2156252538 hasRelatedWork W2961085424 @default.
- W2156252538 hasRelatedWork W2972991241 @default.
- W2156252538 hasRelatedWork W3207148653 @default.
- W2156252538 hasRelatedWork W4286629047 @default.
- W2156252538 hasRelatedWork W4306674287 @default.
- W2156252538 hasRelatedWork W4384212932 @default.
- W2156252538 hasRelatedWork W4224009465 @default.
- W2156252538 isParatext "false" @default.
- W2156252538 isRetracted "false" @default.
- W2156252538 magId "2156252538" @default.
- W2156252538 workType "book-chapter" @default.