Matches in SemOpenAlex for { <https://semopenalex.org/work/W215652118> ?p ?o ?g. }
- W215652118 endingPage "41" @default.
- W215652118 startingPage "24" @default.
- W215652118 abstract "Accurate and computationally efficient simulations of Euler equations are of paramount importance in both fundamental research and engineering applications. In this study, our main objective is to investigate the efficacy and accuracy of several Riemann solvers for high-order accurate weighted essentially non-oscillatory (WENO) reconstruction scheme as a state-of-the-art tool to study shear driven turbulence flows. The Kelvin–Helmholtz instability occurs when a perturbation is introduced to a continuous fluid system with a velocity shear, or where there is a velocity difference across the interface between two fluids. Here, we solve a stratified Kelvin–Helmholtz instability problem to demonstrate the performance of six different Riemann solvers’ ability to evolve a linear perturbation into a transition to nonlinear hydrodynamic two-dimensional turbulence. A single mode perturbation is used for our evaluations. Time evolution process shows that the vortices formed from the turbulence slowly merge together since both energy and enstrophy are simultaneously conserved in two-dimensional turbulence. Third-, fifth- and seventh-order WENO reconstruction schemes are investigated along with the Roe, Rusanov, HLL, FORCE, AUSM, and Marquina Riemann flux solvers at the cell interfaces resulting in 18 joint flow solvers. Based on the numerical assessments of these solvers on various grid resolutions, it is found that the dissipative character of the Riemann solver has significant effect on eddy resolving properties and turbulence statistics. We further show that the order of the reconstruction scheme becomes increasingly important for coarsening the mesh. We illustrate that higher-order schemes become more effective in terms of the tradeoff between the accuracy and efficiency. We also demonstrate that AUSM solver provides the least amount of numerical dissipation, yet resulting in a pile-up phenomenon in energy spectra for underresolved simulations. However, results obtained by the Roe solver agree well with the theoretical energy spectrum scaling providing a marginal dissipation without showing any pile-up at a cost of around 30% increase in computational time." @default.
- W215652118 created "2016-06-24" @default.
- W215652118 creator A5058789709 @default.
- W215652118 creator A5085671233 @default.
- W215652118 date "2015-08-01" @default.
- W215652118 modified "2023-10-17" @default.
- W215652118 title "Evaluation of Riemann flux solvers for WENO reconstruction schemes: Kelvin–Helmholtz instability" @default.
- W215652118 cites W1638842695 @default.
- W215652118 cites W1908859542 @default.
- W215652118 cites W1968767119 @default.
- W215652118 cites W1969647398 @default.
- W215652118 cites W1973827270 @default.
- W215652118 cites W1974916751 @default.
- W215652118 cites W1975411544 @default.
- W215652118 cites W1975706278 @default.
- W215652118 cites W1977586254 @default.
- W215652118 cites W1978048889 @default.
- W215652118 cites W1979052615 @default.
- W215652118 cites W1983195644 @default.
- W215652118 cites W1985171157 @default.
- W215652118 cites W1987194929 @default.
- W215652118 cites W1990436012 @default.
- W215652118 cites W1990739729 @default.
- W215652118 cites W1994203821 @default.
- W215652118 cites W1994615153 @default.
- W215652118 cites W1998830482 @default.
- W215652118 cites W1999921738 @default.
- W215652118 cites W2000596011 @default.
- W215652118 cites W2005671230 @default.
- W215652118 cites W2006134838 @default.
- W215652118 cites W2008028272 @default.
- W215652118 cites W2015449744 @default.
- W215652118 cites W2019602579 @default.
- W215652118 cites W2020293419 @default.
- W215652118 cites W2020679137 @default.
- W215652118 cites W2021121593 @default.
- W215652118 cites W2022719045 @default.
- W215652118 cites W2025584442 @default.
- W215652118 cites W2026955819 @default.
- W215652118 cites W2027087330 @default.
- W215652118 cites W2028740100 @default.
- W215652118 cites W2038054616 @default.
- W215652118 cites W2039150507 @default.
- W215652118 cites W2041983391 @default.
- W215652118 cites W2043057066 @default.
- W215652118 cites W2045849310 @default.
- W215652118 cites W2048776317 @default.
- W215652118 cites W2048941652 @default.
- W215652118 cites W2050196782 @default.
- W215652118 cites W2050962398 @default.
- W215652118 cites W2053048130 @default.
- W215652118 cites W2053276413 @default.
- W215652118 cites W2054583199 @default.
- W215652118 cites W2054662916 @default.
- W215652118 cites W2056554402 @default.
- W215652118 cites W2064370164 @default.
- W215652118 cites W2069100091 @default.
- W215652118 cites W2070912498 @default.
- W215652118 cites W2073080050 @default.
- W215652118 cites W2073651089 @default.
- W215652118 cites W2077366598 @default.
- W215652118 cites W2081057745 @default.
- W215652118 cites W2083367386 @default.
- W215652118 cites W2083898342 @default.
- W215652118 cites W2085233830 @default.
- W215652118 cites W2088432459 @default.
- W215652118 cites W2094821511 @default.
- W215652118 cites W2095324838 @default.
- W215652118 cites W2111943775 @default.
- W215652118 cites W2116091257 @default.
- W215652118 cites W2116127297 @default.
- W215652118 cites W2116729868 @default.
- W215652118 cites W2121755738 @default.
- W215652118 cites W2123124652 @default.
- W215652118 cites W2128520081 @default.
- W215652118 cites W2141853430 @default.
- W215652118 cites W2145594092 @default.
- W215652118 cites W2148305121 @default.
- W215652118 cites W2154542873 @default.
- W215652118 cites W2156669471 @default.
- W215652118 cites W2462804364 @default.
- W215652118 cites W3010292040 @default.
- W215652118 cites W3103839558 @default.
- W215652118 cites W4245037559 @default.
- W215652118 doi "https://doi.org/10.1016/j.compfluid.2015.04.026" @default.
- W215652118 hasPublicationYear "2015" @default.
- W215652118 type Work @default.
- W215652118 sameAs 215652118 @default.
- W215652118 citedByCount "44" @default.
- W215652118 countsByYear W2156521182016 @default.
- W215652118 countsByYear W2156521182017 @default.
- W215652118 countsByYear W2156521182018 @default.
- W215652118 countsByYear W2156521182019 @default.
- W215652118 countsByYear W2156521182020 @default.
- W215652118 countsByYear W2156521182021 @default.
- W215652118 countsByYear W2156521182022 @default.
- W215652118 countsByYear W2156521182023 @default.
- W215652118 crossrefType "journal-article" @default.