Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156771808> ?p ?o ?g. }
- W2156771808 endingPage "58" @default.
- W2156771808 startingPage "43" @default.
- W2156771808 abstract "A two-year cave monitoring study at Westcave Preserve in central Texas provides insight into the controls on the rate of calcite growth and drip water Mg/Ca, Sr/Ca, and Ba/Ca variations. The cave is shallow and has a large ratio of its opening area to its volume, which results in year-round ventilation of the cave. Unlike larger and deeper caves in the region that ventilate seasonally, cave-air temperature and CO2 concentrations at Westcave are near atmospheric throughout the year and calcite growth is continuous. Changes in the rate of calcite growth positively correlate with seasonal temperature variations at all six drip sites studied (r2 = 0.12–0.76; mean r2 = 0.47). Average monthly surface air temperature is positively correlated with drip-water Sr/Ca at five of six drip sites studied (r2 = 0.21–0.80; mean r2 = 0.44), and Ba/Ca at all six sites (r2 = 0.41–0.85; mean r2 = 0.57); whereas this correspondence is only seen in one of six drip sites for Mg/Ca. Applying geochemical modeling of mineral-solution reactions to the Sr/Ca and Ba/Ca time series at Westcave indicates that the evolution of drip-water Sr/Ca and Ba/Ca can be accounted for by two mechanisms: (1) prior calcite precipitation and/or incongruent calcite dissolution (PCP/ICD), which dominate drip-water evolution at one site; and (2) a combination of PCP/ICD and water–rock interaction (WRI) at the other five drip sites. The results suggest a possible seasonality in the operation of the mechanisms of drip-water evolution, whereby PCP/ICD plays a larger role than WRI during the warmer months of the year. Understanding drip-water seasonal Sr/Ca and Ba/Ca variations has implications for paleoclimate studies using speleothems. It is important to first determine if seasonal geochemical variations in drip waters can be identified. One can then determine if these variations are preserved as geochemical laminae in speleothems, which may then provide seasonal temperature variations and thus seasonal age constraints for speleothems. Determining the proportional contributions of the mineral-solution reactions that drive drip-water trace element variations for different drip sites, as well as the extent to which trace element concentrations vary seasonally, will help inform speleothem sample selection and interpretation of geochemical data for paleoclimate study. Our results indicate that speleothems near the well-ventilated entrances of many larger and deeper caves may warrant further consideration for paleoclimate studies." @default.
- W2156771808 created "2016-06-24" @default.
- W2156771808 creator A5072102628 @default.
- W2156771808 creator A5085422111 @default.
- W2156771808 date "2015-01-01" @default.
- W2156771808 modified "2023-10-10" @default.
- W2156771808 title "Temperature-driven seasonal calcite growth and drip water trace element variations in a well-ventilated Texas cave: Implications for speleothem paleoclimate studies" @default.
- W2156771808 cites W1549225056 @default.
- W2156771808 cites W1963612810 @default.
- W2156771808 cites W1966035351 @default.
- W2156771808 cites W1969905974 @default.
- W2156771808 cites W1973906747 @default.
- W2156771808 cites W1976556587 @default.
- W2156771808 cites W1976602831 @default.
- W2156771808 cites W1977680019 @default.
- W2156771808 cites W1978609102 @default.
- W2156771808 cites W1980495087 @default.
- W2156771808 cites W1981926445 @default.
- W2156771808 cites W1985002123 @default.
- W2156771808 cites W1988963026 @default.
- W2156771808 cites W1996172693 @default.
- W2156771808 cites W1998946568 @default.
- W2156771808 cites W2002548119 @default.
- W2156771808 cites W2002691206 @default.
- W2156771808 cites W2008295328 @default.
- W2156771808 cites W2014345960 @default.
- W2156771808 cites W2025504179 @default.
- W2156771808 cites W2026538666 @default.
- W2156771808 cites W2039146381 @default.
- W2156771808 cites W2045684768 @default.
- W2156771808 cites W2060267769 @default.
- W2156771808 cites W2060341446 @default.
- W2156771808 cites W2068694563 @default.
- W2156771808 cites W2071961883 @default.
- W2156771808 cites W2079088413 @default.
- W2156771808 cites W2082728878 @default.
- W2156771808 cites W2092247656 @default.
- W2156771808 cites W2097695931 @default.
- W2156771808 cites W2104768705 @default.
- W2156771808 cites W2106700095 @default.
- W2156771808 cites W2118282237 @default.
- W2156771808 cites W2132772276 @default.
- W2156771808 cites W2135679770 @default.
- W2156771808 cites W2164232903 @default.
- W2156771808 cites W2165145987 @default.
- W2156771808 cites W2168139166 @default.
- W2156771808 cites W2173962328 @default.
- W2156771808 cites W2317561376 @default.
- W2156771808 cites W332619666 @default.
- W2156771808 cites W4252684946 @default.
- W2156771808 doi "https://doi.org/10.1016/j.chemgeo.2014.11.002" @default.
- W2156771808 hasPublicationYear "2015" @default.
- W2156771808 type Work @default.
- W2156771808 sameAs 2156771808 @default.
- W2156771808 citedByCount "37" @default.
- W2156771808 countsByYear W21567718082015 @default.
- W2156771808 countsByYear W21567718082016 @default.
- W2156771808 countsByYear W21567718082017 @default.
- W2156771808 countsByYear W21567718082018 @default.
- W2156771808 countsByYear W21567718082019 @default.
- W2156771808 countsByYear W21567718082020 @default.
- W2156771808 countsByYear W21567718082021 @default.
- W2156771808 countsByYear W21567718082022 @default.
- W2156771808 countsByYear W21567718082023 @default.
- W2156771808 crossrefType "journal-article" @default.
- W2156771808 hasAuthorship W2156771808A5072102628 @default.
- W2156771808 hasAuthorship W2156771808A5085422111 @default.
- W2156771808 hasConcept C107054158 @default.
- W2156771808 hasConcept C111368507 @default.
- W2156771808 hasConcept C121332964 @default.
- W2156771808 hasConcept C127313418 @default.
- W2156771808 hasConcept C132651083 @default.
- W2156771808 hasConcept C153294291 @default.
- W2156771808 hasConcept C171878925 @default.
- W2156771808 hasConcept C18903297 @default.
- W2156771808 hasConcept C199289684 @default.
- W2156771808 hasConcept C2778883040 @default.
- W2156771808 hasConcept C2780191791 @default.
- W2156771808 hasConcept C33683781 @default.
- W2156771808 hasConcept C86803240 @default.
- W2156771808 hasConceptScore W2156771808C107054158 @default.
- W2156771808 hasConceptScore W2156771808C111368507 @default.
- W2156771808 hasConceptScore W2156771808C121332964 @default.
- W2156771808 hasConceptScore W2156771808C127313418 @default.
- W2156771808 hasConceptScore W2156771808C132651083 @default.
- W2156771808 hasConceptScore W2156771808C153294291 @default.
- W2156771808 hasConceptScore W2156771808C171878925 @default.
- W2156771808 hasConceptScore W2156771808C18903297 @default.
- W2156771808 hasConceptScore W2156771808C199289684 @default.
- W2156771808 hasConceptScore W2156771808C2778883040 @default.
- W2156771808 hasConceptScore W2156771808C2780191791 @default.
- W2156771808 hasConceptScore W2156771808C33683781 @default.
- W2156771808 hasConceptScore W2156771808C86803240 @default.
- W2156771808 hasLocation W21567718081 @default.
- W2156771808 hasOpenAccess W2156771808 @default.
- W2156771808 hasPrimaryLocation W21567718081 @default.
- W2156771808 hasRelatedWork W124278380 @default.
- W2156771808 hasRelatedWork W1499311051 @default.