Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156836629> ?p ?o ?g. }
- W2156836629 endingPage "1520" @default.
- W2156836629 startingPage "1506" @default.
- W2156836629 abstract "Abstract Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by 1H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, 1H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted." @default.
- W2156836629 created "2016-06-24" @default.
- W2156836629 creator A5001524565 @default.
- W2156836629 creator A5001957314 @default.
- W2156836629 creator A5011597370 @default.
- W2156836629 creator A5020617563 @default.
- W2156836629 creator A5020822487 @default.
- W2156836629 creator A5030389318 @default.
- W2156836629 creator A5036174024 @default.
- W2156836629 creator A5050103799 @default.
- W2156836629 creator A5051086757 @default.
- W2156836629 creator A5051091672 @default.
- W2156836629 creator A5053281633 @default.
- W2156836629 creator A5055272744 @default.
- W2156836629 creator A5056442312 @default.
- W2156836629 creator A5064735255 @default.
- W2156836629 creator A5069669005 @default.
- W2156836629 creator A5079142438 @default.
- W2156836629 creator A5082107658 @default.
- W2156836629 creator A5084685791 @default.
- W2156836629 date "2010-06-21" @default.
- W2156836629 modified "2023-09-30" @default.
- W2156836629 title "Enhancement of Plant Metabolite Fingerprinting by Machine Learning " @default.
- W2156836629 cites W1491070134 @default.
- W2156836629 cites W1598721326 @default.
- W2156836629 cites W1965916795 @default.
- W2156836629 cites W1977868384 @default.
- W2156836629 cites W1982185581 @default.
- W2156836629 cites W1986662234 @default.
- W2156836629 cites W1988670531 @default.
- W2156836629 cites W1992483596 @default.
- W2156836629 cites W2001378242 @default.
- W2156836629 cites W2006317824 @default.
- W2156836629 cites W2011037803 @default.
- W2156836629 cites W2015690120 @default.
- W2156836629 cites W2022829943 @default.
- W2156836629 cites W2031804135 @default.
- W2156836629 cites W2038544192 @default.
- W2156836629 cites W2049143698 @default.
- W2156836629 cites W2050375893 @default.
- W2156836629 cites W2050522442 @default.
- W2156836629 cites W2056183961 @default.
- W2156836629 cites W2056961153 @default.
- W2156836629 cites W2061551311 @default.
- W2156836629 cites W2069423534 @default.
- W2156836629 cites W2069642685 @default.
- W2156836629 cites W2079544576 @default.
- W2156836629 cites W2089057022 @default.
- W2156836629 cites W2092913562 @default.
- W2156836629 cites W2095716650 @default.
- W2156836629 cites W2097936772 @default.
- W2156836629 cites W2099595662 @default.
- W2156836629 cites W2103074204 @default.
- W2156836629 cites W2104939439 @default.
- W2156836629 cites W2113754828 @default.
- W2156836629 cites W2115592362 @default.
- W2156836629 cites W2119387367 @default.
- W2156836629 cites W2119484251 @default.
- W2156836629 cites W2121852482 @default.
- W2156836629 cites W2122695568 @default.
- W2156836629 cites W2124597839 @default.
- W2156836629 cites W2125776280 @default.
- W2156836629 cites W2130979155 @default.
- W2156836629 cites W2135299792 @default.
- W2156836629 cites W2135893370 @default.
- W2156836629 cites W2137219016 @default.
- W2156836629 cites W2137326400 @default.
- W2156836629 cites W2140047239 @default.
- W2156836629 cites W2141001784 @default.
- W2156836629 cites W2141696759 @default.
- W2156836629 cites W2143283561 @default.
- W2156836629 cites W2143709071 @default.
- W2156836629 cites W2144871646 @default.
- W2156836629 cites W2145904912 @default.
- W2156836629 cites W2147831097 @default.
- W2156836629 cites W2152360790 @default.
- W2156836629 cites W2153553763 @default.
- W2156836629 cites W2155363555 @default.
- W2156836629 cites W2157443208 @default.
- W2156836629 cites W2159366770 @default.
- W2156836629 cites W2160697532 @default.
- W2156836629 cites W2167961554 @default.
- W2156836629 cites W2168377231 @default.
- W2156836629 cites W2168742355 @default.
- W2156836629 doi "https://doi.org/10.1104/pp.109.150524" @default.
- W2156836629 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2923910" @default.
- W2156836629 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20566707" @default.
- W2156836629 hasPublicationYear "2010" @default.
- W2156836629 type Work @default.
- W2156836629 sameAs 2156836629 @default.
- W2156836629 citedByCount "24" @default.
- W2156836629 countsByYear W21568366292012 @default.
- W2156836629 countsByYear W21568366292013 @default.
- W2156836629 countsByYear W21568366292014 @default.
- W2156836629 countsByYear W21568366292016 @default.
- W2156836629 countsByYear W21568366292017 @default.
- W2156836629 countsByYear W21568366292018 @default.
- W2156836629 countsByYear W21568366292019 @default.