Matches in SemOpenAlex for { <https://semopenalex.org/work/W215686427> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W215686427 abstract "A Superconducting Focusing Solenoid for the Neutrino Factory Linear Accelerator * M. A. Green, V. Lebedev, and B. P Strauss The 400-m long linear accelerator is divided into three sections. Upstream from the linear accelerator is a matching section that provides the first 60 MeV of muon acceleration. The end of the matching section consists of a pair of low stray field solenoids with adjustable currents for tuning. The first section has 4 short modules that are 5-meters long. Each short module has two cells of RF cavities. The second section has 16 medium length modules that are 8-meters long. Each intermediate module has two cells of RF cavities arranged in groups of two with a 1-meter space between groups. The short and intermediate modules have a 1-meter long focusing solenoid with a 1.25-meter long straight section at each end. The third acceleration section has 19 long modules that are 13-meters long. The long module has eight superconducting RF cells arranged in groups of two with a 1-meter space between cell groups. The focusing solenoid is 1.5 meters long with a 1.25-meter long space separating it from the adjacent RF cavity cells. The three types of acceleration modules used for the linear accelerator are illustrated in Figure 1. Unlike focusing quadrupoles, focusing solenoids can produce a stray field that exists some distance from the magnet. The superconducting RF cavities are sensitive to magnetic fields even at the level of 0.0001 T (versus 0.043 T for the smallest single solenoid in Table 1), so a key parameter in the focusing solenoid design is getting rid of the solenoid stray field in the RF cavities. The methods one can use to eliminate the stray field in the RF cavities are:1) The focusing solenoid should produce zero net magnetic moment[5,6]. This means that the coil that produces the field is bucked by a coil that is larger in diameter. 2) The field from the bucking coils should be distributed in the same way as the solenoid field. This suggests that the bucking solenoid be around the focusing solenoid so that the return flux from the focusing solenoid is returned between the focusing solenoid and the bucking solenoid[7]. 3) The nested solenoids should be surrounded by iron except where the muon beam passes through the solenoid. 4) An iron flux shield should be installed between the focusing solenoid and the RF cavities. 5) If the stray field is still not low enough, the RF cavities can be covered with a type 2 superconducting shield. This shield will trap earth’s magnetic field, but it will shield out the remaining stray flux from a nearby solenoid provided the cavities are cold (below 5 K) when the solenoid is turned on. An iron shielded actively shielded solenoid appears to be a minimum requirement in order to reduce the stray field to an acceptable level. Abstract--The proposed linear Accelerator that accelerates muons from 190 MeV to 2.45 GeV will use superconducting solenoids for focusing the muon beam. The accelerator will use superconducting RF cavities. These cavities are very sensitive to stay magnetic field from the focusing magnets. Superconducting solenoids can produce large stray fields. This report describes the 201.25 MHz acceleration system for the neutrino factory. This report also describes a focusing solenoid that delivers almost no stray field to a neighboring superconducting RF cavity. Index Terms—Superconducting Focusing Solenoid, Active Shielding, Superconducting RF Cavities I. I NTRODUCTION The proposed neutrino factory generates neutrinos from muon decay in a muon storage ring[1,2]. The muons are created from the decay of pions produced from the collision of protons on a fixed target. The pions are captured by a 20 T solenoid. The pions then decay to muons as they pass down a long channel. The muons are phase-rotated, bunched, and cooled before they can be accelerated and stored in the storage ring[3]. The first stage of acceleration is a linear accelerator that uses superconducting RF cavities[4]. Muon focusing during this acceleration occurs within superconducting solenoids. After the muons are accelerated to 2350 MeV, they enter a re- circulating linac that accelerates them to their final energy of 20 GeV. The 20 GeV muons are then stored in storage ring where they decay to two neutrinos and an electron or positron (depending on the charge of the originating muon type). II. F OCUSING S OLENOIDS FOR THE L INEAR A CCELERATOR The proposed linear accelerator that accelerates the muons from 190 MeV to 2350 MeV extends nearly 400 meters. The Linear accelerator will use high gradient superconducting RF cavities to accelerate the beam. These cavities will not only increase the acceleration gradient, but they will also save electric power. Between the RF cavities there will be superconducting solenoids that provide beam focusing. Received 26 September 2001 * This work was supported by the Office of Science, United States Department of Energy under DOE contract number DE-AC03-76SF00098 M. A. Green, is from the Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA;V. Lebedev, is from the Thomas Jefferson National Laboratory, Newport News VA 23606, USA; B. P Strauss is from the U S Department of Energy, Germantown MD 20874, USA" @default.
- W215686427 created "2016-06-24" @default.
- W215686427 creator A5013547298 @default.
- W215686427 creator A5070802988 @default.
- W215686427 creator A5081983518 @default.
- W215686427 date "2001-09-20" @default.
- W215686427 modified "2023-09-27" @default.
- W215686427 title "A superconducting focusing solenoid for the neutrino factory linear accelerator" @default.
- W215686427 hasPublicationYear "2001" @default.
- W215686427 type Work @default.
- W215686427 sameAs 215686427 @default.
- W215686427 citedByCount "0" @default.
- W215686427 crossrefType "journal-article" @default.
- W215686427 hasAuthorship W215686427A5013547298 @default.
- W215686427 hasAuthorship W215686427A5070802988 @default.
- W215686427 hasAuthorship W215686427A5081983518 @default.
- W215686427 hasConcept C107966497 @default.
- W215686427 hasConcept C117896860 @default.
- W215686427 hasConcept C120665830 @default.
- W215686427 hasConcept C121332964 @default.
- W215686427 hasConcept C1276947 @default.
- W215686427 hasConcept C151011524 @default.
- W215686427 hasConcept C168834538 @default.
- W215686427 hasConcept C180048950 @default.
- W215686427 hasConcept C185544564 @default.
- W215686427 hasConcept C186453547 @default.
- W215686427 hasConcept C189166818 @default.
- W215686427 hasConcept C192144188 @default.
- W215686427 hasConcept C2777289228 @default.
- W215686427 hasConcept C2780586355 @default.
- W215686427 hasConcept C62520636 @default.
- W215686427 hasConcept C74650414 @default.
- W215686427 hasConcept C94915269 @default.
- W215686427 hasConceptScore W215686427C107966497 @default.
- W215686427 hasConceptScore W215686427C117896860 @default.
- W215686427 hasConceptScore W215686427C120665830 @default.
- W215686427 hasConceptScore W215686427C121332964 @default.
- W215686427 hasConceptScore W215686427C1276947 @default.
- W215686427 hasConceptScore W215686427C151011524 @default.
- W215686427 hasConceptScore W215686427C168834538 @default.
- W215686427 hasConceptScore W215686427C180048950 @default.
- W215686427 hasConceptScore W215686427C185544564 @default.
- W215686427 hasConceptScore W215686427C186453547 @default.
- W215686427 hasConceptScore W215686427C189166818 @default.
- W215686427 hasConceptScore W215686427C192144188 @default.
- W215686427 hasConceptScore W215686427C2777289228 @default.
- W215686427 hasConceptScore W215686427C2780586355 @default.
- W215686427 hasConceptScore W215686427C62520636 @default.
- W215686427 hasConceptScore W215686427C74650414 @default.
- W215686427 hasConceptScore W215686427C94915269 @default.
- W215686427 hasLocation W2156864271 @default.
- W215686427 hasOpenAccess W215686427 @default.
- W215686427 hasPrimaryLocation W2156864271 @default.
- W215686427 hasRelatedWork W1619194450 @default.
- W215686427 hasRelatedWork W1656150350 @default.
- W215686427 hasRelatedWork W1680012114 @default.
- W215686427 hasRelatedWork W1843945052 @default.
- W215686427 hasRelatedWork W19563620 @default.
- W215686427 hasRelatedWork W2068919349 @default.
- W215686427 hasRelatedWork W2079402419 @default.
- W215686427 hasRelatedWork W2082986673 @default.
- W215686427 hasRelatedWork W2088770419 @default.
- W215686427 hasRelatedWork W2121081992 @default.
- W215686427 hasRelatedWork W2122292211 @default.
- W215686427 hasRelatedWork W2123215307 @default.
- W215686427 hasRelatedWork W2134958686 @default.
- W215686427 hasRelatedWork W2138114311 @default.
- W215686427 hasRelatedWork W2146136419 @default.
- W215686427 hasRelatedWork W2158027805 @default.
- W215686427 hasRelatedWork W2162917123 @default.
- W215686427 hasRelatedWork W276890197 @default.
- W215686427 hasRelatedWork W283993757 @default.
- W215686427 hasRelatedWork W297633771 @default.
- W215686427 isParatext "false" @default.
- W215686427 isRetracted "false" @default.
- W215686427 magId "215686427" @default.
- W215686427 workType "article" @default.