Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156869239> ?p ?o ?g. }
- W2156869239 endingPage "174" @default.
- W2156869239 startingPage "162" @default.
- W2156869239 abstract "Abstract The effects of downstream base-level control on fluvial architecture and geometry are well explored in several broadly similar sequence-stratigraphic models. Cretaceous Dakota Group strata, U.S. Western Interior, have characteristics reflecting combined downstream and upstream base-level controls that these models cannot address. Particularly, three layers of amalgamated channel-belt sandstone within this group thicken and are continuous for distances (≤ 300 km) along dip that stretch the reasonable lengths for which these models are intended to apply. As well, architecture in up-dip reaches records repeated valley-scale cut-and-fill cycles. This contrasts with equivalent strata down dip which record channel-scale lateral migration with no such valley-scale cycles apparent. We here introduce the concept of and to address these observations. We assume that river longitudinal profiles are each anchored down dip to some physical barrier (e.g., the sea strand, etc.) that we refer to as a buttress. Buttress shift is considered the primary downstream control on base level. Profiles extrapolated up dip from the buttress over any modeled duration of buttress shift can range widely because of high-frequency variability in upstream base-level controls (e.g., discharge, etc). All these potential profiles however are bounded above by the profile of highest possible aggradation, and below by the profile of maximum possible incision. These upper and lower profiles are buffers, and they envelop the available fluvial preservation space. Thickness of the buffer zone is determined by variability in upstream controls and should increase up dip to the limit of downstream profile dominance. Dakota valley-scale surfaces record repeated cut-and-fill cycles driven by up-dip controls and are confined between thick stable buffers. Equivalent strata down dip record lateral reworking within a thinner channel-scale buffer zone that was positioned by downstream controls. Regression exposed slopes similar to the buffer zone, thus buffers were stable for long distances and durations. This prompted dip-extensive lateral reworking of strata into upstream valley-scale and downstream channel-scale sheets. Buffers and buttresses provide a broadly applicable model for fluvial preservation that captures upstream vs. downstream base-level controls on geometry and architecture. The model lends general insights into dip-oriented variations in fluvial architecture, production of sheet vs. lens geometry, total preservation volumes for fluvial systems, and variations in these factors related to contrasting climatic conditions and basin physiography. The model can be amended to existing sequence stratigraphic approaches in order to capture dip-oriented variations in sequence architecture." @default.
- W2156869239 created "2016-06-24" @default.
- W2156869239 creator A5003441137 @default.
- W2156869239 creator A5044171145 @default.
- W2156869239 creator A5051283042 @default.
- W2156869239 date "2006-01-01" @default.
- W2156869239 modified "2023-10-15" @default.
- W2156869239 title "Base-Level Buffers and Buttresses: A Model for Upstream Versus Downstream Control on Fluvial Geometry and Architecture Within Sequences" @default.
- W2156869239 cites W108310539 @default.
- W2156869239 cites W1563224033 @default.
- W2156869239 cites W1615326715 @default.
- W2156869239 cites W1866231958 @default.
- W2156869239 cites W1926272288 @default.
- W2156869239 cites W196374485 @default.
- W2156869239 cites W1970637390 @default.
- W2156869239 cites W1973355166 @default.
- W2156869239 cites W1988654294 @default.
- W2156869239 cites W1991984045 @default.
- W2156869239 cites W1993246513 @default.
- W2156869239 cites W2011270646 @default.
- W2156869239 cites W2014101197 @default.
- W2156869239 cites W2017596128 @default.
- W2156869239 cites W2039295782 @default.
- W2156869239 cites W2042681318 @default.
- W2156869239 cites W2067628429 @default.
- W2156869239 cites W2074438535 @default.
- W2156869239 cites W2079455359 @default.
- W2156869239 cites W2080458803 @default.
- W2156869239 cites W2085896233 @default.
- W2156869239 cites W2086027660 @default.
- W2156869239 cites W2086233564 @default.
- W2156869239 cites W2086957564 @default.
- W2156869239 cites W2088192140 @default.
- W2156869239 cites W2092455269 @default.
- W2156869239 cites W2092850099 @default.
- W2156869239 cites W2099806028 @default.
- W2156869239 cites W2111151668 @default.
- W2156869239 cites W2118381748 @default.
- W2156869239 cites W2123012167 @default.
- W2156869239 cites W2123353125 @default.
- W2156869239 cites W2126355012 @default.
- W2156869239 cites W2127335932 @default.
- W2156869239 cites W2134806919 @default.
- W2156869239 cites W2135852905 @default.
- W2156869239 cites W2136430696 @default.
- W2156869239 cites W2139646416 @default.
- W2156869239 cites W2140403093 @default.
- W2156869239 cites W2144874326 @default.
- W2156869239 cites W2145878901 @default.
- W2156869239 cites W2149417180 @default.
- W2156869239 cites W2149485112 @default.
- W2156869239 cites W2151182374 @default.
- W2156869239 cites W2153222505 @default.
- W2156869239 cites W2164482571 @default.
- W2156869239 cites W2218733113 @default.
- W2156869239 cites W2312780097 @default.
- W2156869239 cites W2315256495 @default.
- W2156869239 cites W2344263043 @default.
- W2156869239 cites W2411152225 @default.
- W2156869239 cites W2474977981 @default.
- W2156869239 cites W2482872526 @default.
- W2156869239 cites W2506123826 @default.
- W2156869239 cites W2565754195 @default.
- W2156869239 cites W2594678864 @default.
- W2156869239 cites W2912954225 @default.
- W2156869239 cites W3109934813 @default.
- W2156869239 cites W3160761443 @default.
- W2156869239 cites W43588767 @default.
- W2156869239 cites W580392308 @default.
- W2156869239 cites W643023914 @default.
- W2156869239 cites W645721618 @default.
- W2156869239 doi "https://doi.org/10.2110/jsr.2005.10" @default.
- W2156869239 hasPublicationYear "2006" @default.
- W2156869239 type Work @default.
- W2156869239 sameAs 2156869239 @default.
- W2156869239 citedByCount "181" @default.
- W2156869239 countsByYear W21568692392012 @default.
- W2156869239 countsByYear W21568692392013 @default.
- W2156869239 countsByYear W21568692392014 @default.
- W2156869239 countsByYear W21568692392015 @default.
- W2156869239 countsByYear W21568692392016 @default.
- W2156869239 countsByYear W21568692392017 @default.
- W2156869239 countsByYear W21568692392018 @default.
- W2156869239 countsByYear W21568692392019 @default.
- W2156869239 countsByYear W21568692392020 @default.
- W2156869239 countsByYear W21568692392021 @default.
- W2156869239 countsByYear W21568692392022 @default.
- W2156869239 countsByYear W21568692392023 @default.
- W2156869239 crossrefType "journal-article" @default.
- W2156869239 hasAuthorship W2156869239A5003441137 @default.
- W2156869239 hasAuthorship W2156869239A5044171145 @default.
- W2156869239 hasAuthorship W2156869239A5051283042 @default.
- W2156869239 hasConcept C109007969 @default.
- W2156869239 hasConcept C112959462 @default.
- W2156869239 hasConcept C114793014 @default.
- W2156869239 hasConcept C123657996 @default.
- W2156869239 hasConcept C127313418 @default.
- W2156869239 hasConcept C127413603 @default.