Matches in SemOpenAlex for { <https://semopenalex.org/work/W2156883153> ?p ?o ?g. }
- W2156883153 endingPage "814" @default.
- W2156883153 startingPage "800" @default.
- W2156883153 abstract "Physical processes that impact soil moisture are typically expressed as nonlinear functions, but most previous research on the estimation of soil moisture has relied on linear techniques. In the present work, two machine learning techniques, a spatial artificial neural network (SANN) and a mixture model (MM), that can infer nonlinear relationships are compared to multiple linear regression (MLR) for estimating soil moisture patterns using topographic attributes as predictor variables. The methods are applied to time-domain reflectometry (TDR) soil moisture data collected at three catchments with varying characteristics (Tarrawarra, Satellite Station and Cache la Poudre) under different wetness conditions. The methods' performances with respect to the number of predictor attributes, the quantity of training data and the attributes employed are compared using the Nash–Sutcliffe coefficient of efficiency (NSCE) as the performance measure. The performances of the methods are dependent on the site studied, the average soil moisture and the quantity of training data provided. Although the methods often perform similarly, the best performing method overall is the SANN, which incorporates additional predictor variables more effectively than the other methods." @default.
- W2156883153 created "2016-06-24" @default.
- W2156883153 creator A5044272766 @default.
- W2156883153 creator A5075223597 @default.
- W2156883153 date "2012-01-27" @default.
- W2156883153 modified "2023-09-29" @default.
- W2156883153 title "An evaluation of nonlinear methods for estimating catchment-scale soil moisture patterns based on topographic attributes" @default.
- W2156883153 cites W1510447231 @default.
- W2156883153 cites W1579271636 @default.
- W2156883153 cites W1589770229 @default.
- W2156883153 cites W1599869189 @default.
- W2156883153 cites W1643664725 @default.
- W2156883153 cites W176189099 @default.
- W2156883153 cites W1969129941 @default.
- W2156883153 cites W1971713783 @default.
- W2156883153 cites W1981440533 @default.
- W2156883153 cites W1996762101 @default.
- W2156883153 cites W1997691426 @default.
- W2156883153 cites W2005880889 @default.
- W2156883153 cites W2010729915 @default.
- W2156883153 cites W2014166534 @default.
- W2156883153 cites W2020097894 @default.
- W2156883153 cites W2027792629 @default.
- W2156883153 cites W2029587925 @default.
- W2156883153 cites W2031543571 @default.
- W2156883153 cites W2033904036 @default.
- W2156883153 cites W2039826512 @default.
- W2156883153 cites W2040277598 @default.
- W2156883153 cites W2049633694 @default.
- W2156883153 cites W2050009461 @default.
- W2156883153 cites W2052298702 @default.
- W2156883153 cites W2053669534 @default.
- W2156883153 cites W2055412520 @default.
- W2156883153 cites W2057018326 @default.
- W2156883153 cites W2058009551 @default.
- W2156883153 cites W2058070495 @default.
- W2156883153 cites W2068806005 @default.
- W2156883153 cites W2069805650 @default.
- W2156883153 cites W2076196252 @default.
- W2156883153 cites W2085363544 @default.
- W2156883153 cites W2085406862 @default.
- W2156883153 cites W2088444589 @default.
- W2156883153 cites W2111990660 @default.
- W2156883153 cites W2119534769 @default.
- W2156883153 cites W2124875591 @default.
- W2156883153 cites W2136473800 @default.
- W2156883153 cites W2143296882 @default.
- W2156883153 cites W2149723649 @default.
- W2156883153 cites W2150704340 @default.
- W2156883153 cites W2170812443 @default.
- W2156883153 cites W2197699544 @default.
- W2156883153 cites W2211925278 @default.
- W2156883153 cites W2237401558 @default.
- W2156883153 doi "https://doi.org/10.2166/hydro.2012.145" @default.
- W2156883153 hasPublicationYear "2012" @default.
- W2156883153 type Work @default.
- W2156883153 sameAs 2156883153 @default.
- W2156883153 citedByCount "13" @default.
- W2156883153 countsByYear W21568831532013 @default.
- W2156883153 countsByYear W21568831532014 @default.
- W2156883153 countsByYear W21568831532015 @default.
- W2156883153 countsByYear W21568831532016 @default.
- W2156883153 countsByYear W21568831532017 @default.
- W2156883153 countsByYear W21568831532018 @default.
- W2156883153 countsByYear W21568831532019 @default.
- W2156883153 crossrefType "journal-article" @default.
- W2156883153 hasAuthorship W2156883153A5044272766 @default.
- W2156883153 hasAuthorship W2156883153A5075223597 @default.
- W2156883153 hasBestOaLocation W21568831531 @default.
- W2156883153 hasConcept C103824480 @default.
- W2156883153 hasConcept C105795698 @default.
- W2156883153 hasConcept C119857082 @default.
- W2156883153 hasConcept C121332964 @default.
- W2156883153 hasConcept C127413603 @default.
- W2156883153 hasConcept C158622935 @default.
- W2156883153 hasConcept C159390177 @default.
- W2156883153 hasConcept C159750122 @default.
- W2156883153 hasConcept C164285268 @default.
- W2156883153 hasConcept C187320778 @default.
- W2156883153 hasConcept C205649164 @default.
- W2156883153 hasConcept C24939127 @default.
- W2156883153 hasConcept C2778755073 @default.
- W2156883153 hasConcept C2778925768 @default.
- W2156883153 hasConcept C31972630 @default.
- W2156883153 hasConcept C33923547 @default.
- W2156883153 hasConcept C39432304 @default.
- W2156883153 hasConcept C41008148 @default.
- W2156883153 hasConcept C48921125 @default.
- W2156883153 hasConcept C50644808 @default.
- W2156883153 hasConcept C58640448 @default.
- W2156883153 hasConcept C62520636 @default.
- W2156883153 hasConcept C63184880 @default.
- W2156883153 hasConceptScore W2156883153C103824480 @default.
- W2156883153 hasConceptScore W2156883153C105795698 @default.
- W2156883153 hasConceptScore W2156883153C119857082 @default.
- W2156883153 hasConceptScore W2156883153C121332964 @default.
- W2156883153 hasConceptScore W2156883153C127413603 @default.
- W2156883153 hasConceptScore W2156883153C158622935 @default.