Matches in SemOpenAlex for { <https://semopenalex.org/work/W2157063432> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2157063432 endingPage "123" @default.
- W2157063432 startingPage "116" @default.
- W2157063432 abstract "Recent years have witnessed a considerable surge of interest in the multi-label learning problem. It has been shown that a key factor for a successful multi-label learning algorithm is to effectively exploit relations between labels. However, most of the previous work exploiting label relations focuses on pairwise relations. To handle the situations where there are intrinsic correlations among multiple labels, in this paper, we propose a generative model, Labeled Four-Level Pachinko Allocation Model (L-F-L-PAM), to capture correlations among multiple labels. In our approach of multi-label learning on text data, we apply the proposed model for inferring the training data and the standard Four-Level Pachinko Allocation Model for the test data. Furthermore, we propose a pruned Gibbs Sampling algorithm in the test stage to reduce the inference time. Finally, extensive experiments have been performed to validate the effectiveness and efficiency of our new approach. The results demonstrate significant improvements of our model over Labeled LDA (L-LDA) and superiority in terms of both effectiveness and computational efficiency over other high-performing multi-label learning methods." @default.
- W2157063432 created "2016-06-24" @default.
- W2157063432 creator A5009732907 @default.
- W2157063432 creator A5025120215 @default.
- W2157063432 creator A5048237545 @default.
- W2157063432 creator A5067731925 @default.
- W2157063432 date "2012-09-01" @default.
- W2157063432 modified "2023-09-25" @default.
- W2157063432 title "Capturing correlations of multiple labels: A generative probabilistic model for multi-label learning" @default.
- W2157063432 cites W1524416683 @default.
- W2157063432 cites W1669437150 @default.
- W2157063432 cites W1953606363 @default.
- W2157063432 cites W1967203824 @default.
- W2157063432 cites W1969486090 @default.
- W2157063432 cites W1979974203 @default.
- W2157063432 cites W2001082470 @default.
- W2157063432 cites W2029970906 @default.
- W2157063432 cites W2066340877 @default.
- W2157063432 cites W2084802027 @default.
- W2157063432 cites W2102705755 @default.
- W2157063432 cites W2106490775 @default.
- W2157063432 cites W2112670995 @default.
- W2157063432 cites W2114535528 @default.
- W2157063432 cites W2114881090 @default.
- W2157063432 cites W2119466907 @default.
- W2157063432 cites W2129026672 @default.
- W2157063432 cites W2149684865 @default.
- W2157063432 cites W2166912588 @default.
- W2157063432 cites W2169863116 @default.
- W2157063432 cites W66588809 @default.
- W2157063432 doi "https://doi.org/10.1016/j.neucom.2011.08.039" @default.
- W2157063432 hasPublicationYear "2012" @default.
- W2157063432 type Work @default.
- W2157063432 sameAs 2157063432 @default.
- W2157063432 citedByCount "17" @default.
- W2157063432 countsByYear W21570634322013 @default.
- W2157063432 countsByYear W21570634322015 @default.
- W2157063432 countsByYear W21570634322016 @default.
- W2157063432 countsByYear W21570634322017 @default.
- W2157063432 countsByYear W21570634322018 @default.
- W2157063432 countsByYear W21570634322021 @default.
- W2157063432 countsByYear W21570634322022 @default.
- W2157063432 countsByYear W21570634322023 @default.
- W2157063432 crossrefType "journal-article" @default.
- W2157063432 hasAuthorship W2157063432A5009732907 @default.
- W2157063432 hasAuthorship W2157063432A5025120215 @default.
- W2157063432 hasAuthorship W2157063432A5048237545 @default.
- W2157063432 hasAuthorship W2157063432A5067731925 @default.
- W2157063432 hasConcept C107673813 @default.
- W2157063432 hasConcept C119857082 @default.
- W2157063432 hasConcept C154945302 @default.
- W2157063432 hasConcept C158424031 @default.
- W2157063432 hasConcept C165696696 @default.
- W2157063432 hasConcept C167966045 @default.
- W2157063432 hasConcept C184898388 @default.
- W2157063432 hasConcept C26517878 @default.
- W2157063432 hasConcept C2776214188 @default.
- W2157063432 hasConcept C38652104 @default.
- W2157063432 hasConcept C39890363 @default.
- W2157063432 hasConcept C41008148 @default.
- W2157063432 hasConcept C49937458 @default.
- W2157063432 hasConceptScore W2157063432C107673813 @default.
- W2157063432 hasConceptScore W2157063432C119857082 @default.
- W2157063432 hasConceptScore W2157063432C154945302 @default.
- W2157063432 hasConceptScore W2157063432C158424031 @default.
- W2157063432 hasConceptScore W2157063432C165696696 @default.
- W2157063432 hasConceptScore W2157063432C167966045 @default.
- W2157063432 hasConceptScore W2157063432C184898388 @default.
- W2157063432 hasConceptScore W2157063432C26517878 @default.
- W2157063432 hasConceptScore W2157063432C2776214188 @default.
- W2157063432 hasConceptScore W2157063432C38652104 @default.
- W2157063432 hasConceptScore W2157063432C39890363 @default.
- W2157063432 hasConceptScore W2157063432C41008148 @default.
- W2157063432 hasConceptScore W2157063432C49937458 @default.
- W2157063432 hasLocation W21570634321 @default.
- W2157063432 hasOpenAccess W2157063432 @default.
- W2157063432 hasPrimaryLocation W21570634321 @default.
- W2157063432 hasRelatedWork W1499494918 @default.
- W2157063432 hasRelatedWork W2106314226 @default.
- W2157063432 hasRelatedWork W2911463906 @default.
- W2157063432 hasRelatedWork W2952148308 @default.
- W2157063432 hasRelatedWork W3011817866 @default.
- W2157063432 hasRelatedWork W3042228302 @default.
- W2157063432 hasRelatedWork W3165012362 @default.
- W2157063432 hasRelatedWork W4287825816 @default.
- W2157063432 hasRelatedWork W4318719391 @default.
- W2157063432 hasRelatedWork W4379255972 @default.
- W2157063432 hasVolume "92" @default.
- W2157063432 isParatext "false" @default.
- W2157063432 isRetracted "false" @default.
- W2157063432 magId "2157063432" @default.
- W2157063432 workType "article" @default.